
Middleware technologies
(CORBA, RMI & DCOM
distributed computing)

Middleware technologies
(CORBA, RMI & DCOM
distributed computing)

S.Chellammal
16-08-2013

16/08/2013 middleware technologies 1

Distributed application/system

Distributed computing / distributed system is a software system in
which components of the system are located on networked
computers communicate and coordinate their actions by passing
messages/RPC/message queues

16/08/2013 middleware technologies 2

Distributed object computing

16/08/2013 middleware technologies 3

Remote Method Invocation

16/08/2013 middleware technologies 4

RMI allows a Java program on one machine to invoke a method on a
remote object

RMI architecture

client server

RMI registry

registerlookup

16/08/2013 middleware technologies 5

JRMP (Java Remote Method Protocol)

remote
reference layer

stub

remote
reference layer

skeleton
RMI

system

Transport

Stub & skeleton

16/08/2013 middleware technologies 6

Marshaling and UnMarshaling

Remote Reference Layer

RRL defines the invocation semantics

Connections: establishes connection between
server and client

Stages:
1. server instantiates service
2. exporting to RMI
3. naming and registering

RRL defines the invocation semantics

Connections: establishes connection between
server and client

Stages:
1. server instantiates service
2. exporting to RMI
3. naming and registering

16/08/2013 middleware technologies 7

RMI Registry

Naming service & registry
Associates a unique name to server object

16/08/2013 middleware technologies 8

Steps to develop RMI

Step 1- Define remote interface

import java.rmi.Remote;
public interface Sum extends Remote
{

public int add(int a, int b) throws RemoteException;
}

Step 1- Define remote interface

import java.rmi.Remote;
public interface Sum extends Remote
{

public int add(int a, int b) throws RemoteException;
}

16/08/2013 middleware technologies 9

Step - 2

Implement the remote interface

import java.rmi.RemoteException;
import java.rmi.server.UnicastRemoteObject;
public class SumImpl extends UnicastRemoteObject implements Sum
{

SumImpl() throws java.rmi.RemoteException{}

public int add(int a, int b) throws java.rmi.RemoteException
{return a+b;}

}

Implement the remote interface

import java.rmi.RemoteException;
import java.rmi.server.UnicastRemoteObject;
public class SumImpl extends UnicastRemoteObject implements Sum
{

SumImpl() throws java.rmi.RemoteException{}

public int add(int a, int b) throws java.rmi.RemoteException
{return a+b;}

}

16/08/2013 middleware technologies 10

Step - 3

• Compile interface

• Compile implementation

• Generate stub & skeleton using rmic

• copy interface file and stub file in client

• Compile interface

• Compile implementation

• Generate stub & skeleton using rmic

• copy interface file and stub file in client

16/08/2013 middleware technologies 11

Step – 4 Instantiate server & bind
import java.rmi.registry.LocateRegistry;
import java.rmi.Naming;
import java.rmi.RemoteException;
import java.net.MalformedURLException;
public class RMIServer
{

public static void main(String args[]) throws RemoteException,
MalformedURLException
{

LocateRegistry.createRegistry(1099);
Sum sum=new SumImpl();
Naming.rebind("lookup_sum", sum);
System.out.println("server ready");

}
}

import java.rmi.registry.LocateRegistry;
import java.rmi.Naming;
import java.rmi.RemoteException;
import java.net.MalformedURLException;
public class RMIServer
{

public static void main(String args[]) throws RemoteException,
MalformedURLException
{

LocateRegistry.createRegistry(1099);
Sum sum=new SumImpl();
Naming.rebind("lookup_sum", sum);
System.out.println("server ready");

}
} 16/08/2013 middleware technologies 12

Step – 5 Develop client
import java.rmi.registry.LocateRegistry;
import java.rmi.registry.Registry;
import java.rmi.Naming;
import java.rmi.RemoteException;
import java.rmi.NotBoundException;
import java.net.MalformedURLException;
public class RMIClient
{

public static void main(String args[]) throws RemoteException, MalformedURLException,
NotBoundException
{

Registry registry=LocateRegistry.getRegistry("localhost");
Sum s = (Sum)registry.lookup("lookup_sum");
System.out.println("client just made a call");
System.out.println(s.add(3,6));

}
}

import java.rmi.registry.LocateRegistry;
import java.rmi.registry.Registry;
import java.rmi.Naming;
import java.rmi.RemoteException;
import java.rmi.NotBoundException;
import java.net.MalformedURLException;
public class RMIClient
{

public static void main(String args[]) throws RemoteException, MalformedURLException,
NotBoundException
{

Registry registry=LocateRegistry.getRegistry("localhost");
Sum s = (Sum)registry.lookup("lookup_sum");
System.out.println("client just made a call");
System.out.println(s.add(3,6));

}
}

16/08/2013 middleware technologies 13

Execute

Run server
java RMIServer

Run Client
java RMIClient

Run server
java RMIServer

Run Client
java RMIClient

16/08/2013 middleware technologies 14

RMI features

• RMI is object based

• It supports invocation of methods on remote objects.

• with RMI it is possible to pass objects as parameters to remote methods.

• Objects are passed by value with the help of object serialization

• RMI is object based

• It supports invocation of methods on remote objects.

• with RMI it is possible to pass objects as parameters to remote methods.

• Objects are passed by value with the help of object serialization

16/08/2013 middleware technologies 15

Middleware

• Middleware is software that enables inter-process
communication. It provides an API that isolates the application
code from the underlying network communication formats and
protocols (FAPs)

• Middleware acts as glue between autonomous components and
processes (e.g., clients, server) by providing generic services on
top of the OS.

• Middleware is software that enables inter-process
communication. It provides an API that isolates the application
code from the underlying network communication formats and
protocols (FAPs)

• Middleware acts as glue between autonomous components and
processes (e.g., clients, server) by providing generic services on
top of the OS.

16/08/2013 middleware technologies 16

Middleware

• Middleware enables applications running across multiple
platforms to communicate with each other .

• Middleware shields the developer from dependencies on
Network Protocols, OS and hardware platforms.

• Middleware is a software layer that lies between the operating
system and the applications on each site of the system.

• Middleware enables applications running across multiple
platforms to communicate with each other .

• Middleware shields the developer from dependencies on
Network Protocols, OS and hardware platforms.

• Middleware is a software layer that lies between the operating
system and the applications on each site of the system.

16/08/2013 middleware technologies 17

Middleware

Distributed application

Host 1/client

Distributed application

Host 2/server

16/08/2013 middleware technologies 18

Middleware

Operating system

Network

Middleware

Operating system

OMG & CORBA

• The Object Management Group consisting of over 600
companies evolved the CORBA specs :Since 1989

• CORBA is a specification for the distributed object bus
architecture defined by OMG

16/08/2013 middleware technologies 19

Object Management Architecture

APPLICATION OBJECTS
COMMON FACILITIES

Horizontal
•User Interface
•Mail
•Printing

DOMAIN OBJECTS

Vertical
•Telecom
•manufacturing
•Finance
•Medical

16/08/2013 middleware technologies 20

COMMON OBJECT SERVICES

OBJECT REQUEST BROKER

persistence
naming trading

security

Object Management Architecture

• Reference model for distributed object computing

• Specifies the components/architecture

• OMA defines two models

• Core Object Model

• Reference model

• Reference model for distributed object computing

• Specifies the components/architecture

• OMA defines two models

• Core Object Model

• Reference model

16/08/2013 middleware technologies 21

Core object model

portability (to be able to create components that don’t rely on
existence and location of a

particular object implementation)

interoperability (to be able to invoke operations on objects
regardless of where they are located, on which platform they
execute, or in which

programming language they are implemented

portability (to be able to create components that don’t rely on
existence and location of a

particular object implementation)

interoperability (to be able to invoke operations on objects
regardless of where they are located, on which platform they
execute, or in which

programming language they are implemented

16/08/2013 middleware technologies 22

Core Object Model contd.

is a classic object model (invoking operations on objects)
– Objects
– Operations
- Signatures
- Parameters
- return values –
- Non-object types (data types) –
- Interfaces
- – Substitutability When two interfaces can act as substitutes to each other

is a classic object model (invoking operations on objects)
– Objects
– Operations
- Signatures
- Parameters
- return values –
- Non-object types (data types) –
- Interfaces
- – Substitutability When two interfaces can act as substitutes to each other

16/08/2013 middleware technologies 23

OMA reference model

Reference model defines 5 components

• ORB
• CORBA Services / CORBA Object Services (COS)/ Common

Object Service Specification (COSS)
• Common facilities
• Domain Objects
• Application Objects

Reference model defines 5 components

• ORB
• CORBA Services / CORBA Object Services (COS)/ Common

Object Service Specification (COSS)
• Common facilities
• Domain Objects
• Application Objects

16/08/2013 middleware technologies 24

ORB chief responsibilities
 making the location transparency ie. routing the

request from a client to object and routing the
reply to destination

 management of the Interface Repository;
a distributed database of IDL definitions

 Client side services for converting remote object
references to and from strings

 Client side dynamic invocation of remote objects

 Server side resource management that is
 activation and deactivation of objects

 making the location transparency ie. routing the
request from a client to object and routing the
reply to destination

 management of the Interface Repository;
a distributed database of IDL definitions

 Client side services for converting remote object
references to and from strings

 Client side dynamic invocation of remote objects

 Server side resource management that is
 activation and deactivation of objects

16/08/2013 middleware technologies 25

ORB Components

 Client Stubs
 Server Skeletons
 Portable Object Adapter (POA)
 Dynamic Invocation Interface (DII)
 Dynamic Skeleton Interfaces (DSI)
 Interface Repository
 Implementation Repository

 Client Stubs
 Server Skeletons
 Portable Object Adapter (POA)
 Dynamic Invocation Interface (DII)
 Dynamic Skeleton Interfaces (DSI)
 Interface Repository
 Implementation Repository

16/08/2013 middleware technologies 26

CORBA Architecture

Client Object Implementation

IDL Compiler

16/08/2013 middleware technologies 27

IDL
Stubs

ORB

Object

Adapter

IDL
Skeleton

Dynamic
Skeleton

Interface
Repository Implementation

Repository
Dynamic
invocation

ORB

IIOP

Feature – 1 : Object Request Broker

• Responsible for all communication between client and server
– Locating objects

• Implementation specific
• Known IOR(Inter-Object Reference)
• Naming and Trading Services(DSN-like)

– Transferring invocations and return values
– Notifying other ORBs of hosted Objects

• Must be able to communicate IDL invocations via IIOP
• If an ORB is OMG compliant, then it is interoperable with all other OMG compliant ORBs
• Interface Repository

– A Database of all of the IDL for compiled objects running on the ORB
• Implementation Repository

– A Database containing policy information and the implementation details for the CORBA objects running on
the ORB

• Load Balancing
• Fail-over support
• Security

• Responsible for all communication between client and server
– Locating objects

• Implementation specific
• Known IOR(Inter-Object Reference)
• Naming and Trading Services(DSN-like)

– Transferring invocations and return values
– Notifying other ORBs of hosted Objects

• Must be able to communicate IDL invocations via IIOP
• If an ORB is OMG compliant, then it is interoperable with all other OMG compliant ORBs
• Interface Repository

– A Database of all of the IDL for compiled objects running on the ORB
• Implementation Repository

– A Database containing policy information and the implementation details for the CORBA objects running on
the ORB

• Load Balancing
• Fail-over support
• Security

16/08/2013 middleware technologies 28

Feature-2 : Interface Definition Language

PL2PL1

16/08/2013 middleware technologies 29

PL6

PL5 PL4

PL3IDL

IDL

• IDL is used to define the public API that is exposed by objects in a
server application. IDL defines this API in a way that
is independent of any particular programming language.

• However, for CORBA to be useful, there must be a mapping from
IDL to a particular programming language.

• For example, the IDL-to-C++ mapping allows people to develop
CORBA applications in C++

• IDL is used to define the public API that is exposed by objects in a
server application. IDL defines this API in a way that
is independent of any particular programming language.

• However, for CORBA to be useful, there must be a mapping from
IDL to a particular programming language.

• For example, the IDL-to-C++ mapping allows people to develop
CORBA applications in C++

16/08/2013 middleware technologies 30

IDL to language compiler

Idl to language
compiler

Interface written in
OMG IDL

16/08/2013 middleware technologies 31

Idl to language
compiler

stub skeleton

IDL Skeleton

IDL to java compiler
(IDL to java mapping)

Interface written in
OMG IDL

Generated from an OMG IDL compiler to
the server language of choice

 Unmarshals request data;

 Dispatch request to servant;

 Marshals reply data

 Servant is the actual CORBA object
implementation in a chosen programming
language

Skeletons are used by the POA

16/08/2013 middleware technologies 32

IDL to java compiler
(IDL to java mapping)

Generated from an OMG IDL compiler to
the server language of choice

 Unmarshals request data;

 Dispatch request to servant;

 Marshals reply data

 Servant is the actual CORBA object
implementation in a chosen programming
language

Skeletons are used by the POAInterface in java
Stub
Skeleton files will be
created

Achieving language independence

Idltojava
Or idlj

Hello.idl

Idltocpp compiler

Hello.idl

16/08/2013 middleware technologies 33

Hello.java
HelloOperations.java
_HelloStub.java
_HelloSkeleton.java

Hello.cpp
HelloOperations.cpp
_HelloStub.cpp
_HelloSkeleton.cpp

Functions of stubs and skeleton

• Refers to the process of translating input
parameters/return values to a format in which
it can be transmitted over the network.

• Unmarshaling is the reverse of marshaling.
• Stubs and skeletons contain code for

marshaling and unmarshaling.

• Refers to the process of translating input
parameters/return values to a format in which
it can be transmitted over the network.

• Unmarshaling is the reverse of marshaling.
• Stubs and skeletons contain code for

marshaling and unmarshaling.

16/08/2013 middleware technologies 34

Static Invocation

Server
IDL Skeleton

IOR
Client

Server
Servant

16/08/2013 middleware technologies 35

Client
IDL
Stub

IIOP

Client ORB Server ORB

Object Adapter

Client Invocation Process Scenario

Client Program

1. String valued 2. Obtain object Handle 4. Check exceptions
object reference 3. Invoke request 5. Utilize results

6. ORBFree()

16/08/2013 middleware technologies 36

ORB CORE

ORB
Interfaces

Interface
Stub

File

user_fun() Results &
exceptions

Object handle

Object Implementation Invocation Scenario

Object Implementation

Methods

2. Registration of
implementation

3. Activate
object

4. Invoke
method

5. Access BOA
service

16/08/2013 middleware technologies 37

Basic Object Adapter
Skeleton

1. Activate
Implementation

Object Request Broker Core

Dynamic Invocation Interface
• Uses interface repository at run-time to discover interfaces.

• No need of pre-compiled stubs.

• Steps –

• Obtain IOR of the interface name and get a reference to an object in the
interface repository.

• Obtain the method description.

• Create the request to be passed.

• Invoke the operation/method.

• Uses interface repository at run-time to discover interfaces.

• No need of pre-compiled stubs.

• Steps –

• Obtain IOR of the interface name and get a reference to an object in the
interface repository.

• Obtain the method description.

• Create the request to be passed.

• Invoke the operation/method.

16/08/2013 middleware technologies 38

Dynamic Skeleton Interface

• Allows the ORB and OA to deliver requests to an object without the need
of pre-compiled skeletons.

• Implemented via a DIR (Dynamic Invocation Routine).
• ORB invokes DIR for every DSI request it makes.

16/08/2013 middleware technologies 39

Dynamic Skeleton Interface

• OA up-calls the DIR servant and provides the request information (targeted
object and operation name etc.).

• DIR asks IOR for the interface name of the targeted object and gets the meta-
data information about it from interface repository.

• Creates the request to targeted object, using other parameters from the
received request.

• Locates the Servant and send the request to it.
• Takes the return parameters and give them back to OA.

• OA up-calls the DIR servant and provides the request information (targeted
object and operation name etc.).

• DIR asks IOR for the interface name of the targeted object and gets the meta-
data information about it from interface repository.

• Creates the request to targeted object, using other parameters from the
received request.

• Locates the Servant and send the request to it.
• Takes the return parameters and give them back to OA.

16/08/2013 middleware technologies 40

Object Adapter

• Different kind of object implementations -
– objects residing in their own process and requiring activation.
– others not requiring activation.
– or some residing in same process as ORB.

• OA helps the ORB to operate with different type of objects.
• Most widely used OA - BOA (Basic OA)
• Recently standardized - POA (Portable OA)

• Different kind of object implementations -
– objects residing in their own process and requiring activation.
– others not requiring activation.
– or some residing in same process as ORB.

• OA helps the ORB to operate with different type of objects.
• Most widely used OA - BOA (Basic OA)
• Recently standardized - POA (Portable OA)

16/08/2013 middleware technologies 41

Object Adapter

• Services provided by ORB via OA -

– Registering implementations.

– Generation and interpretation of object references.

– Mapping object references to their corresponding implementation.

– Activating and deactivating object implementation.

– Invocation of methods via a skeleton.

• Services provided by ORB via OA -

– Registering implementations.

– Generation and interpretation of object references.

– Mapping object references to their corresponding implementation.

– Activating and deactivating object implementation.

– Invocation of methods via a skeleton.

16/08/2013 middleware technologies 42

• IT is a high level standard protocol for communication between ORB
implementations. It is designed to directly work over any connection- oriented
transport protocol

• IIOP - It is a specialized form of GIOP for TCP/IP networks.
• IIOP specifies how GIOP messages will be exchanged over TCP/IP network
• An ORB must support IIOP in order to be considered compliant with CORBA 2.0.
• It consists primarily of the specification for the IIOP IOR, which contains the

host name and the port number.

GIOP & IIOP

• IT is a high level standard protocol for communication between ORB
implementations. It is designed to directly work over any connection- oriented
transport protocol

• IIOP - It is a specialized form of GIOP for TCP/IP networks.
• IIOP specifies how GIOP messages will be exchanged over TCP/IP network
• An ORB must support IIOP in order to be considered compliant with CORBA 2.0.
• It consists primarily of the specification for the IIOP IOR, which contains the

host name and the port number.

16/08/2013 middleware technologies 43

IOR

• Interoperable Object Reference (IOR) - can be used to access the
remote object from within any ORB framework, regardless of
where the IOR was created.

• As mentioned above, the actual type of the object reference is
defined in the client's programming language within the IDL client
stub.

• The object reference will expose an interface that maps directly
to the interface defined in the IDL using the IDL to language
mapping.

• Interoperable Object Reference (IOR) - can be used to access the
remote object from within any ORB framework, regardless of
where the IOR was created.

• As mentioned above, the actual type of the object reference is
defined in the client's programming language within the IDL client
stub.

• The object reference will expose an interface that maps directly
to the interface defined in the IDL using the IDL to language
mapping.

16/08/2013 middleware technologies 44

A simple corba application

Step 1: Create a simple Hello interface in hello.idl

module HelloApp
{
interface Hello
{
string sayHello();
};
};

Step 1: Create a simple Hello interface in hello.idl

module HelloApp
{
interface Hello
{
string sayHello();
};
};

16/08/2013 middleware technologies 45

A simple corba application

Step 2: Use the idltojava compiler as follows to compile the
hello.idl file into the required Java mapping (idltojava
Hello.idl)

The following files are created
Hello.java
HelloHelper.java
HelloHelper.java
_HelloImplBase.java
_HelloStub.java

Step 2: Use the idltojava compiler as follows to compile the
hello.idl file into the required Java mapping (idltojava
Hello.idl)

The following files are created
Hello.java
HelloHelper.java
HelloHelper.java
_HelloImplBase.java
_HelloStub.java

16/08/2013 middleware technologies 46

A simple corba application

Step 3: Use the JDK 1.2 Java compiler and compile the foregoing
classes (javac *.java)

Step 4: Create the HelloServer.java
 HelloServant extends the _HelloImplBase server-side skeleton

automatically created by the idltojava compiler.
 Get the naming context and bind the object
 Step 5: Create the HelloClient.java
 Resolve binding to get reference to object and invoke sayHello()

Step 3: Use the JDK 1.2 Java compiler and compile the foregoing
classes (javac *.java)

Step 4: Create the HelloServer.java
 HelloServant extends the _HelloImplBase server-side skeleton

automatically created by the idltojava compiler.
 Get the naming context and bind the object
 Step 5: Create the HelloClient.java
 Resolve binding to get reference to object and invoke sayHello()

16/08/2013 middleware technologies 47

A simple corba application

• Step 6: Compile HelloServer.java and HelloClient.java

• Running the Application
•

Step 1: Start the transient naming service.
tnameserv -ORBInitialPort 900

• Step 2: Start the HelloServer.
java HelloServer -ORBInitialPort 900

• Step 3: Start the HelloClient.
java HelloClient -ORBInitialPort 900

• Step 6: Compile HelloServer.java and HelloClient.java

• Running the Application
•

Step 1: Start the transient naming service.
tnameserv -ORBInitialPort 900

• Step 2: Start the HelloServer.
java HelloServer -ORBInitialPort 900

• Step 3: Start the HelloClient.
java HelloClient -ORBInitialPort 900

16/08/2013 middleware technologies 48

The First Key To CORBA – IDL
& ORB

VB

C++

Java

Implementation is
Hidden behind interface

16/08/2013 middleware technologies 49

Java

C

Ada
Service or Contract-
oriented View

The Second Key to CORBA: IIOP

CORBA Software Bus

Protocol for
communication:
IIOP

CORBA Software Bus

VC++ COBOL Smalltalk
Interface
Definition
Language

The Third Key to CORBA: Services

VBJava Naming Naming

Events

Transactions

Security

Trader

Notification

Persistence

Management

Standard
IDL for
Services

CORBA Software Bus

VC++COBOL Smalltalk

Naming

Events

Transactions

Security

Trader

Notification

Persistence

Management

CORBA services
 Naming Service
 Trading Service
 Security Service
 Life Cycle Service
 Persistence Object Service
 Object Collection service
 Object transaction service
 Relationship service
 Event service
 Notification service
 Externalization service
 Time service

 Naming Service
 Trading Service
 Security Service
 Life Cycle Service
 Persistence Object Service
 Object Collection service
 Object transaction service
 Relationship service
 Event service
 Notification service
 Externalization service
 Time service

16/08/2013 middleware technologies 52

Naming service

Naming service provides a means for objects to be referenced by
names within a given naming context

Naming service is implementation of OMG’s Interoperable Name
Service (INS) specification

It provides API to map object references to a hierarchical naming
structure

Naming service provides a means for objects to be referenced by
names within a given naming context

Naming service is implementation of OMG’s Interoperable Name
Service (INS) specification

It provides API to map object references to a hierarchical naming
structure

16/08/2013 middleware technologies 53

Naming context

A naming context is a scoping mechanism for names

Within a particular context, names should be unique

Contexts can be nested to form compound context and names

A naming context is a scoping mechanism for names

Within a particular context, names should be unique

Contexts can be nested to form compound context and names

16/08/2013 middleware technologies 54

Overview of naming service

CORBA Object

<name-1, object-1>
<name-2, object-2>
……
…
<name-n, object-n>

Naming service

3. Client
obtaining
object
reference

4. Client
invokes
methods

16/08/2013 middleware technologies 55

<name-1, object-1>
<name-2, object-2>
……
…
<name-n, object-n>

Client

1. Object
binding its
name

2. Client
resolving
its name

3. Client
obtaining
object
reference

Example
LanResources

DataServer
Engineering

Financial

Naming Context

16/08/2013 middleware technologies 56

Financial

Printer

Laser

Sub Contexts

Names

How to add named objects to
naming service

Steps
1. Get the naming context from ORB
2. Create references to objects
3. Build required sub contexts
4. Create context
5. Create names with sub contexts
6. Bind in the context with objects mapped to their names

Steps
1. Get the naming context from ORB
2. Create references to objects
3. Build required sub contexts
4. Create context
5. Create names with sub contexts
6. Bind in the context with objects mapped to their names

16/08/2013 middleware technologies 57

NamingContext

interface NamingContext
{
void bind(in Name n, in Object obj) raises(...);
void rebind(in Name n, in Object obj) raises(...);
void bind_context(in Name n, in NamingContext nc) raises(...);
void rebind_context(in Name n, in NamingContext nc) raises(...);
Object resolve(in Name n) raises(...);
void unbind(in Name n) raises(...);
NamingContext new_context();
NamingContext bind_new_context(in Name n) raises(...);
void destroy() raises(...);
void list(in unsigned long how_many, out BindingList bl, out BindingIterator bi);
};

interface NamingContext
{
void bind(in Name n, in Object obj) raises(...);
void rebind(in Name n, in Object obj) raises(...);
void bind_context(in Name n, in NamingContext nc) raises(...);
void rebind_context(in Name n, in NamingContext nc) raises(...);
Object resolve(in Name n) raises(...);
void unbind(in Name n) raises(...);
NamingContext new_context();
NamingContext bind_new_context(in Name n) raises(...);
void destroy() raises(...);
void list(in unsigned long how_many, out BindingList bl, out BindingIterator bi);
};

16/08/2013 middleware technologies 58

Sample code

NamingContext base =//from ORB

//there are three objects having names engineering, financial &
laser

org.corba.Object a = new ….eng object
org.corba.Object b = new ….fin object
org.corba.Object b = new ….laser object

NamingContext base =//from ORB

//there are three objects having names engineering, financial &
laser

org.corba.Object a = new ….eng object
org.corba.Object b = new ….fin object
org.corba.Object b = new ….laser object

16/08/2013 middleware technologies 59

Sample code contd.

//create required subcontexts

NamingComponent lan = new NameComponent(“LanResources”);

NamingComponent data= new NameComponent(“DataServer”);

NamingComponent prn= new NameComponent(“Printer”);

//create required subcontexts

NamingComponent lan = new NameComponent(“LanResources”);

NamingComponent data= new NameComponent(“DataServer”);

NamingComponent prn= new NameComponent(“Printer”);

16/08/2013 middleware technologies 60

Sample code contd.

//create context

NamingComponent[] path = {lan};

NamingContext c = base.bind_new_context(path);

// redefine path
path={lan, data, new NamingComponent(“Engineering”);
//binding first object, eng with names
c.bind(path,eng);

//create context

NamingComponent[] path = {lan};

NamingContext c = base.bind_new_context(path);

// redefine path
path={lan, data, new NamingComponent(“Engineering”);
//binding first object, eng with names
c.bind(path,eng);

16/08/2013 middleware technologies 61

Sample code contd.

// redefine path
path={lan, data, new NamingComponent(“Financial”);
//binding second object, fin with names
c.bind(path,fin);

// redefine path

path={lan, prn, new NamingComponent(“Laser”);
//binding third object, prn with names

c.bind(path,prn);

// redefine path
path={lan, data, new NamingComponent(“Financial”);
//binding second object, fin with names
c.bind(path,fin);

// redefine path

path={lan, prn, new NamingComponent(“Laser”);
//binding third object, prn with names

c.bind(path,prn);

16/08/2013 middleware technologies 62

Client resolving name

Object resolve(name of the object);

16/08/2013 middleware technologies 63

Trading service

 Trading service contains numerous service offers organized
into different service offer types(categories)

 Trading service provides a way for a server to advertise its
object reference

 Trading service contains numerous service offers organized
into different service offer types(categories)

 Trading service provides a way for a server to advertise its
object reference

16/08/2013 middleware technologies 64

Overview of trading service

client server

Trading Service
Service
offers

16/08/2013 middleware technologies 65

Service
offers

export
lookup

Service Types

Architecture of trading service

Register

Link

Admin

Trading
components

Service
Type
Repository

server export

Other
trading
service

define

server

16/08/2013 middleware technologies 66

Register

Lookup
Proxy

Trading
components

Database plugin

server export

server export

client

lookup

Trading components

• Service Type Repository
The Service Type Repository contains details of service types, as a kind of
catalogue. Each service type definition has a unique name and zero or more
properties. An appropriate service type must exist in the Service Type
Repository before a server can export an offer

16/08/2013 middleware technologies 67

ServiceTypeRepository

• This interface is used to define service offer
types

• add_type() – used to define new service offer type

• remove_type() – used to remove a service offer type

• This interface is used to define service offer
types

• add_type() – used to define new service offer type

• remove_type() – used to remove a service offer type

16/08/2013 middleware technologies 68

Register

When a service offer type is created, it possible to advertise corba object
references using export method

export() operation is used to create a service offer, that is, an
advertisement for an object. Parameters to this operation specify an
object reference, the service offer type that it matches, and its properties

The return value from export() is a unique string that denotes an offer id. This
is used to withdraw or modify the offer

withdraw() operation is used to withdraw (that is, delete) a service offer.
string export(in Object reference, in string type, in PropertySeq properties)

raises(...);
void withdraw(in string offer_id)…..

When a service offer type is created, it possible to advertise corba object
references using export method

export() operation is used to create a service offer, that is, an
advertisement for an object. Parameters to this operation specify an
object reference, the service offer type that it matches, and its properties

The return value from export() is a unique string that denotes an offer id. This
is used to withdraw or modify the offer

withdraw() operation is used to withdraw (that is, delete) a service offer.
string export(in Object reference, in string type, in PropertySeq properties)

raises(...);
void withdraw(in string offer_id)…..

16/08/2013 middleware technologies 69

Lookup

Lookup interface has only one operation, called query().

This operation is used to retrieve service offers (advertisements) from the
Trading Service that match a specified constraint.

void query(service_type_name, constraint, preference, ... desired_props,...)
raises(...); };

Lookup interface has only one operation, called query().

This operation is used to retrieve service offers (advertisements) from the
Trading Service that match a specified constraint.

void query(service_type_name, constraint, preference, ... desired_props,...)
raises(...); };

16/08/2013 middleware technologies 70

Other interfaces and details

The Proxy supports the delayed evaluation of offers and can be used to
encapsulate legacy systems. A proxy offer is like a normal service offer in that it has a service type and
named properties. However, it does not contain an object reference leading directly to the interface
providing the service; it contains a reference to an object supporting the Lookup interface (the Trader
performs a secondary lookup on this interface, transparently to the client).

• Link
• The Link interface is used to federate traders.

• Admin
• The Admin interface is used to query and change the administrative properties of the trader

• Database Plug-in

• Persistence in the Trading Service is normally implemented with a database. The OpenFusion Trading
Service supports many different databases through the use of JDBC plug-ins.

The Proxy supports the delayed evaluation of offers and can be used to
encapsulate legacy systems. A proxy offer is like a normal service offer in that it has a service type and
named properties. However, it does not contain an object reference leading directly to the interface
providing the service; it contains a reference to an object supporting the Lookup interface (the Trader
performs a secondary lookup on this interface, transparently to the client).

• Link
• The Link interface is used to federate traders.

• Admin
• The Admin interface is used to query and change the administrative properties of the trader

• Database Plug-in

• Persistence in the Trading Service is normally implemented with a database. The OpenFusion Trading
Service supports many different databases through the use of JDBC plug-ins.

16/08/2013 middleware technologies 71

Other details

• XML Import and Export
• Trading Service enables offers to be both exported and imported as XML documents.
• Service type definitions can also be imported into the service type repository as XML

documents.
• Service Types
• A service type represents the information needed to describe a service. The service type has a

name This is usually meaningful within the the context of the business where the service will
be used; in a video-on-demand system, for example, service types would probably have
names such as programme, movie and sports_event. A service type definition contains:

• • an interface name
• • zero or more named property types
• • zero or more super-types

• XML Import and Export
• Trading Service enables offers to be both exported and imported as XML documents.
• Service type definitions can also be imported into the service type repository as XML

documents.
• Service Types
• A service type represents the information needed to describe a service. The service type has a

name This is usually meaningful within the the context of the business where the service will
be used; in a video-on-demand system, for example, service types would probably have
names such as programme, movie and sports_event. A service type definition contains:

• • an interface name
• • zero or more named property types
• • zero or more super-types

16/08/2013 middleware technologies 72

Programming trading service

org.omg.CORBA.Object obj =
orb.resolve_initial_references("TradingService");
org.omg.CosTrading.Lookup trader =
org.omg.CosTrading.LookupHelper.narrow(obj);

Step 1 - Add a service type in service type repository
Create a service offer type if a corresponding one doesn’t already exist within

the Trader Service. This example creates an Printer
service offer type.

org.omg.CORBA.Object obj = trader.type_repos();

org.omg.CORBA.Object obj =
orb.resolve_initial_references("TradingService");
org.omg.CosTrading.Lookup trader =
org.omg.CosTrading.LookupHelper.narrow(obj);

Step 1 - Add a service type in service type repository
Create a service offer type if a corresponding one doesn’t already exist within

the Trader Service. This example creates an Printer
service offer type.

org.omg.CORBA.Object obj = trader.type_repos();

16/08/2013 middleware technologies 73

Trading service

//create properties
org.omg.CosTradingRepos.ServiceTypeRepository.PropStruct[] props = new

org.omg.CosTradingRepos.ServiceTypeRepository.PropStruct[2];

props[0] = new org.omg.CosTradingRepos.ServiceTypeRepository.PropStruct();
props[0].name = “resolution";
Props[0].value _type =…..primitive long
….
…..
type_repos_obj.add_type(
"Printer" // Service Type
"IDL:TraderDemo/PrintServer:1.0", // IDL type name
props, // offer properties
superTypes // no supertypes
);

//create properties
org.omg.CosTradingRepos.ServiceTypeRepository.PropStruct[] props = new

org.omg.CosTradingRepos.ServiceTypeRepository.PropStruct[2];

props[0] = new org.omg.CosTradingRepos.ServiceTypeRepository.PropStruct();
props[0].name = “resolution";
Props[0].value _type =…..primitive long
….
…..
type_repos_obj.add_type(
"Printer" // Service Type
"IDL:TraderDemo/PrintServer:1.0", // IDL type name
props, // offer properties
superTypes // no supertypes
);

16/08/2013 middleware technologies 74

Exporting service offer

PrintServer_Impl print_server_impl = new PrintServer_Impl();
PrintServer print_server = print_server_impl._this(orb);;
org.omg.CORBA.Object trader = orb.resolve_initial_references("TradingService");
org.omg.CosTrading.Lookup lookup = org.omg.CosTrading.LookupHelper.narrow(trader);
org.omg.CosTrading.Register register = lookup.register_if();
3 org.omg.CosTrading.Property[] props = new org.omg.CosTrading.Property[3];
props[0] = new org.omg.CosTrading.Property();
Props[0].name = “resolution";
props[2].value = orb.create_any();
props[2].value.insert_long(100);
String id = reg.export(
);

PrintServer_Impl print_server_impl = new PrintServer_Impl();
PrintServer print_server = print_server_impl._this(orb);;
org.omg.CORBA.Object trader = orb.resolve_initial_references("TradingService");
org.omg.CosTrading.Lookup lookup = org.omg.CosTrading.LookupHelper.narrow(trader);
org.omg.CosTrading.Register register = lookup.register_if();
3 org.omg.CosTrading.Property[] props = new org.omg.CosTrading.Property[3];
props[0] = new org.omg.CosTrading.Property();
Props[0].name = “resolution";
props[2].value = orb.create_any();
props[2].value.insert_long(100);
String id = reg.export(
);

16/08/2013 middleware technologies 75

Lookup into trader
// Trader Service reference, trader, acquired earlier
org.omg.CosTrading.Policy[] policies = new org.omg.CosTrading.Policy[0];
org.omg.CosTrading.LookupPackage.SpecifiedProps desiredProps =
new org.omg.CosTrading.LookupPackage.SpecifiedProps();
desiredProps.__default(org.omg.CosTrading.LookupPackage.HowManyP
rops.all);
org.omg.CosTrading.OfferSeqHolder offers = new org.omg.CosTrading.OfferSeqHolder();
org.omg.CosTrading.OfferIteratorHolder iter = new
org.omg.CosTrading.OfferIteratorHolder();
org.omg.CosTrading.PolicyNameSeqHolder limits = new
org.omg.CosTrading.PolicyNameSeqHolder();
trader.query(
"Printer", // the service type
“resolution = 100", // the constraint to match
"random", // the order to sort the results
policies, // no special policies
desiredProps, // set to return all properties
50, // max offers to return
offers, // offers returned
iter, // remaining offers
limits // polices applied by the trader
);

// Trader Service reference, trader, acquired earlier
org.omg.CosTrading.Policy[] policies = new org.omg.CosTrading.Policy[0];
org.omg.CosTrading.LookupPackage.SpecifiedProps desiredProps =
new org.omg.CosTrading.LookupPackage.SpecifiedProps();
desiredProps.__default(org.omg.CosTrading.LookupPackage.HowManyP
rops.all);
org.omg.CosTrading.OfferSeqHolder offers = new org.omg.CosTrading.OfferSeqHolder();
org.omg.CosTrading.OfferIteratorHolder iter = new
org.omg.CosTrading.OfferIteratorHolder();
org.omg.CosTrading.PolicyNameSeqHolder limits = new
org.omg.CosTrading.PolicyNameSeqHolder();
trader.query(
"Printer", // the service type
“resolution = 100", // the constraint to match
"random", // the order to sort the results
policies, // no special policies
desiredProps, // set to return all properties
50, // max offers to return
offers, // offers returned
iter, // remaining offers
limits // polices applied by the trader
);

16/08/2013 middleware technologies 76

Look into trader

org.omg.CosTrading.Offer[] offer = offers.value;

if (offer.length() != 0)
{
//match offer and find best match
}

org.omg.CosTrading.Offer[] offer = offers.value;

if (offer.length() != 0)
{
//match offer and find best match
}

16/08/2013 middleware technologies 77

Security service
Element meaning

Subject A human user or system entity which, may attempt an
action within a secure system.

authentication The act of establishing the identity of a subject. Once
authenticated, the subject becomes a Principal.

Principal An authenticated subject. Basically, this is any entity that
directly or indirectly causes an invocation to be made
against an object.

16/08/2013 middleware technologies 78

Principal An authenticated subject. Basically, this is any entity that
directly or indirectly causes an invocation to be made
against an object.

Credential A container within a secure CORBA system for the security
attributes associated with a principal.

Security association The result of establishment of trust between a specific
client and server, possibly enduring several invocations.

Security features
authentication

 An entity refers to human user or a program. An entity should prove its identify

 an entity with the ability to use the resources of a system is called a principal

 Authentication is the process of verifying an entity’s claimed identity.
 Note that clients can authenticate servers, and vice versa.
 Authentication can be either mandatory or optional depending on the security requirements of a

given system.

 Successful authentication results in the principal being granted a set of privilege attributes (such as
roles, groups, security clearance levels and so on); these are stored in a credentials object

 The credentials are considered during authorization.

 An entity refers to human user or a program. An entity should prove its identify

 an entity with the ability to use the resources of a system is called a principal

 Authentication is the process of verifying an entity’s claimed identity.
 Note that clients can authenticate servers, and vice versa.
 Authentication can be either mandatory or optional depending on the security requirements of a

given system.

 Successful authentication results in the principal being granted a set of privilege attributes (such as
roles, groups, security clearance levels and so on); these are stored in a credentials object

 The credentials are considered during authorization.

16/08/2013 middleware technologies 79

Authorization

• This is the process of verifying whether or not a principal is allowed to perform a requested action in a
system.

• An example of a commonly used authorization paradigm is Access Control Lists (ACLs).

• Although the flexibility of ACLs differ among CORBA Security products, ACLs typically allow access to be
constrained at varying levels of granularity, such as per-process, per-object, per-interface or per-
operation.

• Some products may also provide ACL functionality that allows access decisions to be made based on
the values of parameters passed to IDL operations.

• Note that during authorization the set of privilege attributes that was determined for the principal

during the authentication process is used to control access to system resources.

• This is the process of verifying whether or not a principal is allowed to perform a requested action in a
system.

• An example of a commonly used authorization paradigm is Access Control Lists (ACLs).

• Although the flexibility of ACLs differ among CORBA Security products, ACLs typically allow access to be
constrained at varying levels of granularity, such as per-process, per-object, per-interface or per-
operation.

• Some products may also provide ACL functionality that allows access decisions to be made based on
the values of parameters passed to IDL operations.

• Note that during authorization the set of privilege attributes that was determined for the principal

during the authentication process is used to control access to system resources.

16/08/2013 middleware technologies 80

Data integrity

• Data integrity.
• This uses techniques such as message digests

(a form of cryptographic checksum) to provide
protection against malicious modification of
messages.

• Data integrity.
• This uses techniques such as message digests

(a form of cryptographic checksum) to provide
protection against malicious modification of
messages.

16/08/2013 middleware technologies 81

Confidentiality

• This ensures the privacy of message
exchanges so that only the intended recipients
can read them.

16/08/2013 middleware technologies 82

Detection of misordering

• This prevents an attacker from rearranging
messages in a different order to that in which
they were sent.

16/08/2013 middleware technologies 83

Auditing/logging

• This involves keeping secure records of “who did what” so that access to
system resources can be examined at a later time. Some security systems
allow registration with a real-time management service that can perform
appropriate system-defined alerts.

16/08/2013 middleware technologies 84

Delegation

• This is when one user or principal authorizes another to use
their identity or privileges, potentially with usage restrictions.
authorization process and be based on the current effective
principal. Alternatively, some security products additionally
allow authorization decisions to be based on delegation
constraints associated with a request.

• This is when one user or principal authorizes another to use
their identity or privileges, potentially with usage restrictions.
authorization process and be based on the current effective
principal. Alternatively, some security products additionally
allow authorization decisions to be based on delegation
constraints associated with a request.

16/08/2013 middleware technologies 85

Non-repudiation

• Non-repudiation.
• Non-repudiation means the ability to prove whether or not a

principal invoked a particular operation, so that the principal cannot later
deny invoking an operation that he or she did, in fact, invoke..

• Non-repudiation.
• Non-repudiation means the ability to prove whether or not a

principal invoked a particular operation, so that the principal cannot later
deny invoking an operation that he or she did, in fact, invoke..

16/08/2013 middleware technologies 86

Different levels of security

• Security: basic interfaces and data types which span all levels
• SecurityLevel1: the most basic, provides security features to all

applications regardless of their level of participation
• SecurityLevel2: permits access to credentials and additional policy controls
• SecurityAdmin: permits manipulation of administrative features not

necessarily related to invocation or other processing

• Security: basic interfaces and data types which span all levels
• SecurityLevel1: the most basic, provides security features to all

applications regardless of their level of participation
• SecurityLevel2: permits access to credentials and additional policy controls
• SecurityAdmin: permits manipulation of administrative features not

necessarily related to invocation or other processing

16/08/2013 middleware technologies 87

User Authentication

Client Application

User Sponsor

16/08/2013 middleware technologies 88

ORB
Security Enforcement System

Principal
Authenticator

Execution context

Credential

Identity

Privileges

CORBA Security Model
Client Application

(Message Sender)

Message

Target Object

16/08/2013 middleware technologies 89

ORB

Security Enforcement Subsystem

Execution Context

Credential

Identity

Privileges

Message

Policy
Enforcement
Code

Domain

Domain
Policy

Subjects

• Security attributes
• Identities : username, certificates
• Privilege attributes : groups, roles

• Credentials are containers for security attributes
• Active entities in the system identifiable using

“credentials”
• The PrincipalAuthenticator object authenticates

subjects and assigns non-public security attributes

• Security attributes
• Identities : username, certificates
• Privilege attributes : groups, roles

• Credentials are containers for security attributes
• Active entities in the system identifiable using

“credentials”
• The PrincipalAuthenticator object authenticates

subjects and assigns non-public security attributes

16/08/2013 middleware technologies 90

Actions

• Methods invocations
• ORB can look at each request or response and

see whether it’s legal according to the security
policy rules

• ORB provides security transparent

• Methods invocations
• ORB can look at each request or response and

see whether it’s legal according to the security
policy rules

• ORB provides security transparent

16/08/2013 middleware technologies 91

Execution Contexts

• Credentials are stored in execution contexts
• Own credentials

– belongs to the current subject

• Received credentials
– Belongs to the subject that most recently sent a

message

• Invocation credentials
– The subject identity that will be used when sending the

next message

• Credentials are stored in execution contexts
• Own credentials

– belongs to the current subject

• Received credentials
– Belongs to the subject that most recently sent a

message

• Invocation credentials
– The subject identity that will be used when sending the

next message

16/08/2013 middleware technologies 92

Execution Contexts

Execution Context

Own
Credential

Received
Credential

Invocation
Credential

16/08/2013 middleware technologies 93

Own
Credential

Received
Credential

Invocation
Credential

Identities Identities Identities

Privileges Privileges Privileges

Access Control information

Client

?
allow/deny

access?

Object
Object

?

16/08/2013 middleware technologies 94

Client

Server Object
Object

Policy

Grouping of Objects with the same Policy in
Policy-Domains

Delegation

Client
Object

Intermediate
Object

Client
Credentials

Target
Object

Intermediate
Credentials

No delegation

16/08/2013 middleware technologies 95

Client
Object

Intermediate
Object

Intermediate
Object

Client
Object

Intermediate
Object

Client
Credentials

Target
Object

Intermediate
Credentials

Client
Credentials

Client
Credentials

Simple delegation

Delegation

Combined privileges delegation

Client &
Intermediate
privileges in

single
credential

Composite delegation

Client
Object

Intermediate
Object

Intermediate
Object

Client
Credentials

Client &
Intermediate
Credentials

Traced delegation

16/08/2013 middleware technologies 96

Client
Object

Intermediate
Object

Client
Credentials

Chain of
credentials

Client
Object

Intermediate
Object

Intermediate
Object

Client
Credentials

Client &
Intermediate
privileges in

single
credential

Persistence – overview

state

Corba
object

Local/remote data
store

State of
corba object

16/08/2013 middleware technologies 97

ORB

Data store
operations

Persistence Object Service

POS - OMG’s specification to provide common interfaces to the
mechanisms used for retrieving and managing persistent state
of corba objects.

16/08/2013 middleware technologies 98

POS abstractions/components

 Persistent ID – Object ID
 Persistent Object – Corba object
 Persistent Object Manager – redirects request from client to a

particular mechanism used to control an object’s persistence
 Protocol – provides interface between object and

PDS
 Data store – maintains object’s persistent state
 Persistent Data Service (PDS) – provides

mechanism for persistence

 Persistent ID – Object ID
 Persistent Object – Corba object
 Persistent Object Manager – redirects request from client to a

particular mechanism used to control an object’s persistence
 Protocol – provides interface between object and

PDS
 Data store – maintains object’s persistent state
 Persistent Data Service (PDS) – provides

mechanism for persistence

16/08/2013 middleware technologies 99

Interactions

PID factory

client

1. Create PID

3.Store(pid)

POM

4.Store(obj,pid)

5.Store(obj,pid)

16/08/2013 middleware technologies 100

client

PO factory

2. Create_PO(pid,pom_id)

PO

3.Store(pid)

Data
store

PDS

5.Store(obj,pid)

7. Update
object

6. get state()

Interactions

Steps
1. Client performs initialization. Creation of PID by using factory object.

create_pid()
2. Client creates Persistent Object (PO). The PID must be associated with PO.

Here, PO factory creates PO create_PO(pid,pom_id)
3. Client seeks store(pid) on PO
4. In turn, the PO seeks store(obj, pid) to POM
5. In turn, the POM submits the request to PDS
6. PDS gets the current state of the object and
7. PDS updates the state in data store

Steps
1. Client performs initialization. Creation of PID by using factory object.

create_pid()
2. Client creates Persistent Object (PO). The PID must be associated with PO.

Here, PO factory creates PO create_PO(pid,pom_id)
3. Client seeks store(pid) on PO
4. In turn, the PO seeks store(obj, pid) to POM
5. In turn, the POM submits the request to PDS
6. PDS gets the current state of the object and
7. PDS updates the state in data store

16/08/2013 middleware technologies 101

Life cycle service

 Creation of objects

 Removal of objects

 Copying of objects

 Moving of objects

 Creation of objects

 Removal of objects

 Copying of objects

 Moving of objects

16/08/2013 middleware technologies 102

Creation of corba objects

Object creation is performed using factory objects

A factory is a corba object offering a method for creating new
instances of a particular object type at a particular location

Life cycle service defines an IDL interface called ‘GenericFactory’.
This interface contains a generic ‘create_object()’ method. By
specifying a set of IDL ‘Criteria’ corba objects are created

Object creation is performed using factory objects

A factory is a corba object offering a method for creating new
instances of a particular object type at a particular location

Life cycle service defines an IDL interface called ‘GenericFactory’.
This interface contains a generic ‘create_object()’ method. By
specifying a set of IDL ‘Criteria’ corba objects are created

16/08/2013 middleware technologies 103

Other life cycle operations

Object creating is handled by factory object. Other life cycle
operations are executed on the objects itself.

An object support life cycle services has to implement
LifeCycleObject interface

Object creating is handled by factory object. Other life cycle
operations are executed on the objects itself.

An object support life cycle services has to implement
LifeCycleObject interface

16/08/2013 middleware technologies 104

LifeCycleObject

Interface LifeCycleObject
{

LifeCycleObject copy(in FactoryFinder there, in Criteria c)
raises (….)

void move(in FactoryFinder there, in Criteria c))
raises (….)

void remove() raises (…)
};

Interface LifeCycleObject
{

LifeCycleObject copy(in FactoryFinder there, in Criteria c)
raises (….)

void move(in FactoryFinder there, in Criteria c))
raises (….)

void remove() raises (…)
};

16/08/2013 middleware technologies 105

Other life cycle operations

copy() – creates a copy of the object at some location. A
reference to the newly created object is returned

move() – this operation moves the object to another location

remove() – deletes the object

copy() – creates a copy of the object at some location. A
reference to the newly created object is returned

move() – this operation moves the object to another location

remove() – deletes the object

16/08/2013 middleware technologies 106

move() method

Life cycle service specifies a ‘FactoryFinder’ interface

move() method is called on the object
An instance of FactoryFinder is passed as parameter
The move() operation is supposed to as the factory finder for a factory.
The factory creates another instance of the original object at a location.
The method transfers the state of the original object to new one and

makes the original reference referring to the newly created object.

Life cycle service specifies a ‘FactoryFinder’ interface

move() method is called on the object
An instance of FactoryFinder is passed as parameter
The move() operation is supposed to as the factory finder for a factory.
The factory creates another instance of the original object at a location.
The method transfers the state of the original object to new one and

makes the original reference referring to the newly created object.

16/08/2013 middleware technologies 107

Diagram

Client :LifeCycleObject :FactoryFinder
1. move

1.1: find_factories

1.2 create

16/08/2013 middleware technologies 108

:GenericFactory

