
Int. J. Computational Science and Engineering, Vol. 10, Nos. 1/2, 2015 45

Copyright © 2015 Inderscience Enterprises Ltd.

Towards quicker discovery and selection of
web services considering required degree of
match through indexing and decomposition of
non-functional constraints

Chellammal Surianarayanan* and Gopinath Ganapathy
School of Computer Science and Engineering,
Bharathidasan University,
Tiruchirappalli, 620 024, India
Email: chelsrsd@rediffmail.com
Email: gganapathy@gmail.com
*Corresponding author

Manikandan Sethunarayanan Ramasamy
Department of Mathematics,
Bharathidasan University Constituent College,
Lalgudi, 621 601, India
Email: manirs2004@yahoo.co.in

Abstract: An approach is proposed for identifying best services for composition based on
functional and non-functional characteristics of services with a special focus on computational
optimisation of functional discovery and non-functional selection. Discovery is optimised using a
unique indexing consists of two indices, one for outputs of services and the other for inputs of
services. In either index, each key is mapped to its semantically related service categories. The
fine split of semantic relations into eight categories assists in handling disparate similarity
demands of service clients efficiently. Also, indexing eliminates semantic reasoning entirely
during querying. Non-functional selection is optimised using local selection method in
multithreaded fashion with a new method of decomposing non-functional constraints.
Further, indexing is used to expedite the searching of finding best services during selection.
Experimentation results are presented. The minimum time consumption of the method makes it
more applicable to dynamic composition needs.

Keywords: quicker discovery; service selection; service indexing; constraint decomposition;
optimisation; functional discovery; non-functional selection; performance optimisation.

Reference to this paper should be made as follows: Surianarayanan, C., Ganapathy, G. and
Ramasamy, M.S. (2015) ‘Towards quicker discovery and selection of web services considering
required degree of match through indexing and decomposition of non-functional constraints’,
Int. J. Computational Science and Engineering, Vol. 10, Nos. 1/2, pp.45–69.

Biographical notes: Chellammal Surianarayanan is an Assistant Professor in Computer Science
at Bharathidasan University Constituent College for Women, Orathanadu, India. She has 12 years
of experience in research and academic services. She is a research scholar in the School of
Computer Science and Engineering, Bharathidasan University, India. Her research interests
include semantic web services, semantic web and data mining.

Gopinath Ganapathy is a Professor in Computer Science at Bharathidasan University, India. He
has published around 30 research papers in international journals and conferences. He has 23
years of experience in academia, industry, research and consultancy services. He has around 8.5
years of international experience in the USA and UK. His research interests include semantic
web, auto programming, natural language processing and text mining.

46 C. Surianarayanan et al.

Manikandan Sethunarayanan Ramasamy is an Assistant Professor in Mathematics at
Bharathidasan University Constituent College, Lalgudi. He holds a PhD in Graph Theory. He has
12 years of research and seven years of academic experience. He has published nine research
papers in international journals and conferences. His research interests include graph theory and
optimisation techniques.

1 Introduction

Web service composition is a process in which more than
one atomic service are combined in a specific pattern to
accomplish a given business requirement. Any business
requirement can be represented as a workflow consisting of
a set of tasks combined in a specific pattern. A task
represents an abstract function having inputs and outputs.
The tasks are implemented by web services which are
offered by service providers. During composition, at first
the services which could implement the tasks are
discovered and then they are combined in the mentioned
pattern to produce the desired business goal. An example
workflow which represents the query, book an appointment
with a cardiologist in a hospital located in a particular
location and book a vehicle to reach the hospital is
given in Figure 1. The workflow given in Figure 1 contains
tasks, namely, ‘Find_Hospital’, ‘Find_Cardiologist’, ‘Book_
Appointment’, ‘Check_for_Ambulance’, ‘Book_Cab’ and
‘Book_Ambulance’. In Figure 1, ‘OS’ and ‘OJ’ indicate OR
Split and OR Join of an OR execution pattern respectively.
As shown in Figure 1, the tasks, T1, T2, T3 and T4 are
executed in sequence. After the execution of T4, either T5 or
T6 will be executed. Like OR pattern, a workflow may
contain other patterns such as AND, loop, etc. As in
Figure 1 even services from different domains may be
combined to meet a given business goal. Complex business
goals need several services from different domains to be
discovered and composed in relatively short time. To
implement service composition efficiently, three critical
aspects should be considered. They are automation in
service discovery, incorporation of a particular level of
similarity between tasks and their implementing services as
demanded by client applications and non-functional aspects
of services.

The prerequisite for composition is the discovery of
services which implement various tasks of a given
workflow. Discovery becomes a challenge owing to two
conflicting aspects, namely, availability of many services

and dynamic needs of business applications. These two
aspects demand automation in discovery which has been
brought by semantic service description languages such as
Web Ontology Language for Services (OWL-S) (Guo et al.,
2005). These languages allow services to be described with
explicit semantics in the form of ontological (formal)
constructs. Semantics makes services machine interpretable
and brings automation in discovery. Corresponding to
semantic description, during discovery, a matching
component has to find the semantic matching between the
query and each available service with the help of an
ontology reasoner such as Pellet. The ontology reasoner
interacts with ontologies and finds various semantic
relations such as equivalent, plug-in, subsumes and fail
(Paolucci et al., 2002) among the concepts of the query and
the available services. Though semantics brings maximum
automation in discovery, semantic reasoning with
ontologies is time consuming (Mokhtar et al., 2006). In real
applications, as many services from different domains have
to be discovered and composed in a complex chain, the
performance of semantic discovery becomes a crucial factor
in deciding the feasibility of dynamic service composition.
Hence, it is essential to optimise the performance of
semantic discovery.

During discovery, the incorporation of a particular level
of similarity between a task and its implementing service as
demanded by clients should be considered. In practice,
discovery approaches such as Skoutas et al. (2008), Zhag et
al. (2009), Pathak et al. (2005) and Mokhtar et al. (2008)
compute the similarity between a given task and the
available services using four levels of degree of match
(DoM), namely, equivalent, plug-in, subsumes and fail
described in Paolucci et al. (2002). But these levels of DoM
may not be suitable to handle all applications as the
similarity needs of applications are disparate. The
significance of incorporating required level of similarity is
illustrated using two examples given below.

Figure 1 An example workflow

 Towards quicker discovery and selection of web services considering required degree of match 47

Consider the task T2 in Figure 1. Let the function of T2 be to
find the details of a cardiologist in a given hospital. The
input and the output of the task are hospital and cardiologist
respectively. Let the fragment of an imaginary ontology
given in Figure 2 describe the output of T2. During
discovery, approaches such as Skoutas et al. (2008) will
find a service returning the details of general physician
as a matched service of T2 (as according to the given
fragment of ontology, general physician is a super class of
cardiologist). Also, methods such as Rozina et al. (2010)
will find services returning details of gynecologist and child
specialist as matched services of T2 (as according to the
given fragment of ontology, gynecologist and child
specialist are siblings of cardiologist). In reality, T2 cannot
be implemented by services which return the details of
general physician or gynecologist or child specialist, though
general physician, gynecologist and child specialist are
semantically related to cardiologist. The task, T2 can be
implemented only by its equivalent matches.

Figure 2 Fragment of an imaginary ontology

Let us consider another task which performs the function,
Book tickets in XYZ Airlines to travel from Singapore to
London on 2nd October 2012. Here the task may be
implemented using a service offer from an airlines other
than XYZ Airlines such as ABC Airlines (which provides the
same function) when seats are not available with XYZ
Airlines. In this case, though ABC Airlines is sibling of XYZ
Airlines, the offer from ABC Airlines is acceptable.

Thus the required degree of match (RDoM) between a
task and its implementing service is dependent on the nature
of applications and it should be considered during
discovery. We refer the minimum level of similarity that
should exist between a task and its implementing service as
demanded by a client as RDoM.

Selection of services for composition based on quality of
service (QoS) characteristics (which refer to non-functional
attributes such as response time, availability, latency, etc.,
of services) is essential as users tend to query such as
find a Malaysian tour planning service whose cost is
<=$500. In this example, besides the functional
requirements of tour planning, the cost of service should

also be considered during composition. To accommodate
the varying non-functional needs of service clients, service
providers offer multiple services having same functional
characteristics but different non-functional characteristics.
The services which offer the function of same task with
different QoS would form a service class (Mohammad
et al., 2008). To accomplish the user’s QoS requirements, it
is essential to find the best service for each task from its
corresponding service class based on QoS.

In view of the above analysis, a new approach which
identifies the best service combination for composition is
proposed in two stages, namely, functional discovery and
non-functional selection. In functional discovery, services
which implement various tasks of the workflow are
discovered based on inputs and outputs of tasks according to
the given RDoM. The functional discovery results in a
set of service classes which will be given as input to
non-functional selection. In selection the best service is
selected for each task from its respective service class based
on QoS.

The chief aim of the approach is to reduce the
computation time of discovery and selection taking into
account the demands of RDoM and QoS. The approach
proposes a unique hash-based indexing mechanism to
enhance the performance of discovery. The approach
completely eliminates invoking of semantic reasoning
during querying using two indices, namely, output index
and input index. In the output index the services are
indexed by their outputs (i.e., the output parameters of
services are used as keys). In the input index, the services
are indexed by their inputs (i.e., the input parameters of
services are used as keys). In either index, each key is
mapped to its eight different kinds of semantically related
service categories, namely, equivalent, direct-plugin,
indirect-plugin, direct-subsumes, indirect-subsumes, sibling,
partial-parent and grandparent. The RDoM of client
applications can be expressed using the above categories.
As the approach uses hash-based indexing, it achieves time
complexity of O(1) while retrieving matched services of a
query. The approach optimises the performance of selection
using local selection in multithreaded fashion with a new
method of decomposing QoS constraints. The method of
decomposing constraints has a unique feature that it is
independent of number of services present in a service class.
Also, during selection the speed of searching for the best
service is enhanced using hash indexing.

2 Literature survey

Recently clustering and indexing techniques are used
to optimise the performance of semantic discovery.
Clustering-based approaches such as Rozina et al. (2010),
Liu et al. (2009) and Zhu et al. (2010) partition the available
services into different groups of similar services. For
example, the available services may be partitioned as
‘education group’, ‘weather group’, ‘financial group’, ‘food
group’, ‘travel group’, etc. When a query arrives, a
particular cluster which is most similar to the query is

48 C. Surianarayanan et al.

identified and semantic matching is employed only to that
cluster, eliminating all other clusters as irrelevant. Hence,
clustering-based methods achieve improved performance by
reducing the number of services that require semantic
reasoning. However clustering-based methods have to
perform semantic matching during querying to those
services which are present in the most similar cluster of the
query to find matched services of the query.

Discovery approaches such as Zhou et al. (2009), Kuang
et al. (2007) and Gao et al. (2009) identify a set of atomic or
parallel combination of services called ‘candidate services’
which can deliver the outputs of a query using output-based
indexing. The inputs of each candidate service are
semantically matched with that of query by invoking
semantic reasoning. Here, semantic reasoning is invoked
during querying which is time consuming.

The methods (Skoutas et al., 2008; Qiu and Li, 2008)
are close to our work with respect to discovery. The method
(Qiu and Li, 2008) presents an approach for integrating
semantic features of services into the conventional universal
description discovery and integration (UDDI) and discovers
matched services of a query based on semantic similarity of
service properties. This method uses an ontology concept
index and similarity data table to speed up the discovery. In
the similarity data table each ontology concept is mapped to
its related concepts which have similarity values higher than
a minimum value. The ontology concept index maps each
concept to its occurrence locations (service name, inputs
and outputs) in published services. When a query arrives,
the semantically related concepts for each concept of the
query are obtained from similarity data table. Then, services
which contain the query concepts and their related concepts
are retrieved from the ontology index. Specifying minimum
similarity as a numerical value while storing related
concepts in similarity data table is difficult and compared to
numeric values, categorical values are more suitable.
In this method there is no inner split of matched services;
but a split will help the clients to pick up the most
desirable match. Further, the method does not present
experimentation related to computation time of discovery.
The method (Skoutas et al., 2008) prevents semantic
reasoning during querying by indexing the subsumption
relations among concepts in a numerically encoded format
using two R-Trees, one for inputs and the other for outputs.
Though the method mainly addresses the discovery of
services based on functional aspects, it does not take into
account the sibling or grandparent relations among
concepts. Also, the methods (Skoutas et al., 2008; Qiu and
Li, 2008) did not address selection of services based on
QoS.

As an alternative to the above approaches, the proposed
approach uses a unique indexing scheme for discovery. It
uses two indices, namely, output index and input index for
output and input parameters of services respectively. In
either index, each key is mapped to its eight different types
of semantically related service categories. For each key, its
service categories are computed using a semantic reasoner
prior to querying itself. The keys and their service

categories are archived. An in-memory indexing of
pre-computed values is implemented using hash data
structures to enhance the performance of discovery as well
as to achieve constant time complexity. Maintenance of two
indices eliminates semantic reasoning entirely during
querying. Also, a service client is allowed to specify the
RDoM in terms of the above categories and during querying
matched services of a query are retrieved from the indices
according to the given RDoM.

QoS-based selection is handled by two major methods,
namely, global planning and local selection. In global
planning, at first a composite service is formed by
combining one service from each service class. Then the
QoS attributes of composite service are computed and
checked against user’s QoS requirements. To reduce the
exponential time complexity of global approach, local
selection approaches such as Mohammad and Thomas
(2009), Li et al. (2010), Jin et al. (2010) and Sun et al.
(2010) are being used. Local selection methods treat the
selection of service combination for a given workflow as a
main problem and divide the main problem into n sub
problems where n indicates the number of tasks in the
workflow. The sub problems are constructed by
decomposing the given user’s QoS constraints called global
constraints (workflow level) into task level constraints
called local constraints and assigning the local constraints to
individual tasks.

The method of decomposing constraints presented in
Mohammad and Thomas (2009) is extensively used by other
approaches such as Li et al. (2010), Jin et al. (2010) and Sun
et al. (2010). Though Mohammad and Thomas (2009)
describes an efficient way of decomposing constraints, it
uses mixed integer programming (MIP) to identify local
constraints. Hence, it suffers from poor time characteristics
when number of services grows. Also, the computation time
of this method is influenced by number of constraints.
Further, this method assigns a particular level of a QoS
attribute which is more frequent in a service class as local
constraint of that service class. In such situation, there may
be other service which may not be most frequent but has the
maximum utility for a user. But such service which is
capable of yielding the maximum utility is ignored by the
method. But we propose a new method for decomposing
QoS constraints based on extreme values (minimum and
maximum) of QoS attributes of service classes. As the
method of assigning constraints is based on extreme values,
it is not affected by individual services present in service
classes.

After construction, each sub problem is solved to select
a suitable service from its service class subject to its local
constraints. Here, the suitable service is identified based on
the utility function which captures user’s QoS preferences
over different attributes. There are many approaches such as
Zeng et al. (2003, 2004) and Hong and Hu (2009) which
formulate the sub problem as a linear programming (LP)
problem and find the optimal values for utility and QoS
attributes (decision variables). Though solving sub problems
using LP techniques helps in computing optimal values of

 Towards quicker discovery and selection of web services considering required degree of match 49

utility and QoS attributes, the method does not help in
identifying the service having the optimal values whereas
identification (of service) is must for service composition.
Hence, in the proposed approach, the service with maximum
utility is determined using standard searching technique.
Further, in the proposed approach, indexing of QoS values
by service ID is used to speed up the searching.

3 Proposed approach

A new approach in two stages, namely, functional
discovery and non-functional selection is proposed for
identifying best services for composition with its main
focus on computational optimisation of functional discovery
and non-functional selection. The computation time of
functional discovery is reduced by pre-computing various
semantic relations among inputs and outputs of all services
and maintaining the pre-computed semantic relations in two
indices, namely, output index and input index. The
computation time of non-functional selection is reduced by
using local selection in multithreaded fashion with a new
method of decomposing QoS constraints.

3.1 Functional discovery

The functional discovery is split into two tasks, namely,
index creation and service retrieval. Index creation is
performed prior to querying. During querying service
retrieval is performed using the indices.

3.1.1 Index creation

In the proposed approach two indices, namely, output index
and input index are used to optimise the performance of
discovery. Output and input parameters of services are used
as the keys of output index and input index respectively. In
either index, each key is mapped to its semantically related
service categories (values of the key). To realise the
disparate similarity demands of clients, for each key,
its value is categorised into eight different semantically
related service categories, namely, equal, direct-plugin,
indirect-plugin, direct-subsumes, indirect-subsumes, sibling,
partial-parent and grandparent. The service categories for
both indices are similar. The service categories with respect
to output index are described below.

1 Equivalent: This category refers to the set of all
services having at least one output whose type is
exactly equivalent to the type of the key.

2 Direct-plugin: This category refers to the set of all
services having at least one output whose type is direct
super class (i.e., immediate super class) to the type of
the key.

3 Indirect-plugin: This category refers to the set of all
services having at least one output whose type is
indirect super class (i.e., deeper super class) to the type
of the key.

4 Direct-subsumes: This category refers to the set of all
services having at least one output whose type is direct
sub class (i.e., immediate sub class) to the type of the
key.

5 Indirect-subsumes: This category refers to the set of all
services having at least one output whose type is
indirect sub class (i.e., deeper sub class) to the type of
the key.

6 Sibling: This category refers to the set of all services
having at least one output whose all parents’ types are
same as all parents’ types of the key.

7 Partial-parent: This category refers to the set of all
services having at least one output whose at least one
parent’s type is same as at least one parent’s type of the
key.

8 Grandparent: This category refers to the set of all
services related to the type of the key in one of the
following ways.
• services having at least one output whose at least

one grandparent’s type is same as at least one
grandparent’s type of the key

• services having at least one output whose at least
one parent’s type is same as at least one
grandparent’s type of the key

• services having at least one output whose at least
one grandparent’s type is same as at least one
parent’s type of the key.

Towards the creation of indices, for each key its
semantically related service categories with respect to all
available services (present in a service repository) are
pre-computed with the help of an ontology reasoner. The
input and output service indices are constructed using the
pre-computed semantically related service categories as
discussed below.

Let s1, s2, …, sm be the available services in a repository.
Let si denote an ith service. Let out(si) denote the set
of all outputs of si. Let in(si) denote the set of all inputs
of si. Let two sets, namely, Input_index_keyset and
Output_index_keyset denote all the keys of input index and
output index respectively. The keys of input and output
indices are defined as follows.

()
1

_ _
m

i
i

Input index keyset in s
=

=∪ (1)

()
1

_ _
m

i
i

Output index keyset out s
=

=∪ (2)

For each key of the input index, i.e., for each
x ∈ Input_index_keyset, its various semantically
related service categories, namely, equal, direct-plugin,
indirect-plugin, direct-subsumes, indirect-subsumes,
sibling, partial-parent and grandparent are denoted by
dom_in(1, x), dom_in(2, x), dom_in(3, x), dom_in(4, x),
dom_in(5, x), dom_in(6, x), dom_in(7, x) and dom_in(8, x)

50 C. Surianarayanan et al.

respectively. Each key is mapped to its service categories
and the structure of the input index is given in Figure 3. In
Figure 3, the left side denotes the keys of the input
index (i.e., x) and the right side denotes the values of
the keys (i.e., values of x). From Figure 3, one can
understand how each key of the input index (i.e., each
x ∈ Input_index_keyset) is mapped to its semantically
related service categories.

Similarly, for each key of the output index,
x ∈ Output_index_keyset, its various semantically
related service categories, namely, equal, direct-plugin,
indirect-plugin, direct-subsumes, indirect-subsumes,
sibling, partial-parent and grandparent are denoted by
dom_out(1, x), dom_out(2, x), dom_out(3, x), dom_out(4, x),
dom_out(5, x), dom_out(6, x), dom_out(7, x) and
dom_out(8, x) respectively. Each key of the output index is
mapped to its semantically related service categories and the
structure of the output index is given in Figure 4.
In Figure 4, the left side denotes the keys of the output
index (i.e., x) and the right side denotes the values of keys
of output index (i.e., values of x). From Figure 4 one
can understand how each key of the output index (i.e., each
x ∈ Output_index_keyset) is mapped to its semantically
related service categories.

To show how a particular key entry will exist in an
index, consider a key, x ∈ Input_index_keyset. Let x be
‘http://localhost/ontology/concept.owl#_recommended_pric
e’. The entry of x and its mapped values in the input index is
given in Figure 5. For each semantic service category,
typical values are given in Figure 5. For example, from

Figure 5, the equivalent service category for x is found to be
{s23, s24, s25}.

3.1.2 Service retrieval

Let t be a task for which matched services have to be
retrieved using the indices. Let Input(t) denote the set of all
inputs of t. Let Output(t) denote the set of all outputs of t.
For each input x ∈ Input(t), its semantically related service
categories, namely, dom_in(1, x), dom_in(2, x), dom_in(3,
x), dom_in(4, x), dom_in(5, x), dom_in(6, x), dom_in(7, x)
and dom_in(8, x) are extracted from the input index.
Similarly for each output x ∈ Output(t), its semantically
related service categories, namely, dom_out(1, x),
dom_out(2, x), dom_out(3, x), dom_out(4, x), dom_out(5, x),
dom_out(6, x), dom_out(7, x) and dom_out(8, x) are
extracted from the output index.

At first, the equivalent matched service category of the
given task denoted by equal(t) is computed by taking the
intersection of the corresponding service categories of
inputs and outputs of the task. Then, based on the results of
intersection, we successively define modified service
categories for inputs and outputs of the task and ultimately
we define further matched service categories of t, namely,
direct_plugin(t), indirect_plugin(t), direct_subsumes(t),
indirect_subsumes(t), sibling(t), partial-parent(t) and
grandparent(t).

Figure 3 Structure of input index

Figure 4 Structure of output index

 Towards quicker discovery and selection of web services considering required degree of match 51

Figure 5 Example of a particular key x and its service categories in input index

For each i, 1 ≤ i ≤ 8, and for each x ∈ Input(t), we define
successively m_dom_in(i, x) and for each i, 1 ≤ i ≤ 8, and
for each y ∈ Output(t), we define successively
m_dom_out(i, y) as described below.

Case 1: i = 1

_ _ (1,) _ (1,), ()m dom in x dom in x x Input t= ∀ ∈ (3)

_ _ (1,) _ (1,), ()m dom out y dom out y y Output t= ∀ ∈ (4)

Case 2: i ≥ 2

Sub Case 2a:

()

()

_ _ (1,)

_ _ (1,)

x Input t

y Output t

m dom in i x

m dom out i y φ

∈

∈

⎛ ⎞−
⎜ ⎟
⎝ ⎠
⎛ ⎞− ≠⎜ ⎟
⎝ ⎠
∩

∩

∩

_ _ (,) _ (,),
()

m dom in i x dom in i x
x Input t

=
∀ ∈

 (5)

_ _ (,) _ (,),
()

m dom out i y dom out i y
y Output t

=
∀ ∈

 (6)

Sub Case 2b:

()

()

_ _ (1,)

_ _ (1,)

x Input t

y Output t

m dom in i x

m dom out i y φ

∈

∈

⎛ ⎞−
⎜ ⎟
⎝ ⎠
⎛ ⎞− =⎜ ⎟
⎝ ⎠
∩

∩

∩

_ _ (,)
_ (,) _ _ (1,), ()

m dom in i x
dom in i x m dom in i x x Input t= − ∀ ∈∪

 (7)

52 C. Surianarayanan et al.

_ _ (,)
_ (,) _ _ (1,),

 ()

m dom out i y
dom out i y m dom out i y

y Output t
= −
∀ ∈

∪ (8)

Now we define various matched service categories for the
given task as follows.

()

()

()

_ _ (1,)

_ _ (1,)

x Input t

y Output t

equal t

m dom in x

m dom out y

∈

∈

⎛ ⎞= ⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

∩

∩

∩
 (9)

()

()

_ ()

_ _ (2,)

_ _ (2,)

x Input t

y Output t

direct plugin t

m dom in x

m dom out y

∈

∈

⎛ ⎞= ⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

∩

∩

∩
 (10)

()

()

_ ()

_ _ (3,)

_ _ (3,)

x Input t

y Output t

indirect plugin t

m dom in x

m dom out y

∈

∈

⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

∩

∩

∩
 (11)

()

()

_ ()

_ _ (4,)

_ _ (4,)

x Input t

y Output t

direct subsumes t

m dom in x

m dom out y

∈

∈

⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

∩

∩

∩
 (12)

()

()

_ ()

_ _ (5,)

_ _ (5,)

x Input t

y Output t

indirect subsumes t

m dom in x

m dom out y

∈

∈

⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

∩

∩

∩
 (13)

()

()

()

_ _ (6,)

_ _ (6,)

x Input t

y Output t

sibling t

m dom in x

m dom out y

∈

∈

⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

∩

∩

∩
 (14)

()

()

- ()

_ _ (7,)

_ _ (7,)

x Input t

y Output t

partial parent t

m dom in x

m dom out y

∈

∈

⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

∩

∩

∩
 (15)

()

()

()

_ _ (8,)

_ _ (8,)

x Input t

y Output t

grandparent t

m dom in x

m dom out y

∈

∈

⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

∩

∩

∩
 (16)

We define one more matched service category called
partial(t) based on the value of grandparent(t).

Let

()

_ _ (8,)
x Input t

m dom in xA
∈

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∩

Let

()

_ _ (8,)
y Output t

m dom out yB
∈

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∩

If grandparent(t) φ, we define partial(t) as follows

Case 1: A = φ; B = φ

()partial t φ= (17)

Case 2: A = φ; B ≠ φ

()partial t B= (18)

Case 3: A ≠ φ; B = φ

()partial t A= (19)

Case 4: A ≠ φ; B ≠ φ

()partial t A B= ∪ (20)

The process of retrieving services is illustrated using a task t
having two inputs denoted by Input(t) = {x1, x2} and one
output denoted by Output(t) = {y1}. The inputs x1 and x2 of t
will be matched with each key of the input index. Similarly,
the output y1 of t will be matched with each key of the
output index. The values or (i.e., service categories) mapped
by the matched keys of x1 and x2 are extracted from the
input index and given in Table 1. Similarly, the values
mapped by the matched key of y1 are extracted from the
output index and given in Table 2. Further, note that the
data given in Tables 1 and 2 are typical values assumed to
explain the method of service retrieval.

Table 1 Service categories extracted for x1 and x2 from the input index

xi dom_in(1, xi) dom_in(2, xi) dom_in(3, xi) dom_in(4, xi) dom_in(5, xi) dom_in(6, xi) dom_in(7, xi) dom_in(8, xi)

x1 {s6, s7} {s3} {s11, s12} φ {s14} {s13} {s17} {s19}

x2 {s8} {s7} {s11} {s14} {s7} {s13, s17} φ {s19, s23}

 Towards quicker discovery and selection of web services considering required degree of match 53

Table 2 Service categories extracted for y1 from the output index

yi dom_out(1, yi) dom_out(2, yi) dom_out(3, yi) dom_out(4, yi) dom_out(5, yi) dom_out(6, yi) dom_out(7, yi) dom_out(8, yi)

y1 {s6, s7} {s3} {s11, s13} φ {s14} φ {s17} φ

From Table 1, the service categories, namely,
equal, direct-plugin, indirect-plugin, direct-subsumes,
indirect-subsumes, sibling, partial-parent and grandparent
mapped by the matched key of x1, denoted by dom_in(1, x1),
dom_in(2, x1), dom_in(3, x1), dom_in(4, x1), dom_in(5, x1),
dom_in(6, x1), dom_in(7, x1) and dom_in(8, x1) are
retrieved as

() { }
() { }
() { }
()
() { }
() { }
() { }
() { }

1 6 7

1 3

1 11 12

1

1 14

1 13

1 17

1 19

_ 1, = ,

 _ 2, =

 _ 3, = ,

 _ 4, =

_ 5, =

_ 6, =

_ 7, =

_ 8, =

dom in x s s

dom in x s

dom in x s s

dom in x

dom in x s

dom in x s

dom in x s

dom in x s

φ
 (21)

Further, from Table 1, the service categories, namely,
equal, direct-plugin, indirect-plugin, direct-subsumes,
indirect-subsumes, sibling, partial-parent and grandparent
mapped by the matched key of x2, denoted by dom_in(1, x2),
dom_in(2, x2), dom_in(3, x2), dom_in(4, x2), dom_in(5, x2),
dom_in(6, x2), dom_in(7, x2) and dom_in(8, x2) are
retrieved as

() { }
() { }
() { }
() { }
() { }
() { }
()
() { }

2 8

2 7

2 11

2 14

2 7

2 13 17

2

2 19 23

_ 1, =

 _ 2, =

 _ 3, =

 _ 4, =

_ 5, =

_ 6, = ,

_ 7, =

_ 8, = ,

dom in x s

dom in x s

dom in x s

dom in x s

dom in x s

dom in x s s

dom in x

dom in x s s

φ

 (22)

Similarly, from Table 2, the service categories, namely,
equal, direct-plugin, indirect-plugin, direct-subsumes,
indirect-subsumes, sibling, partial-parent and grandparent
mapped by the matched key of y1, denoted by dom_out(1,
y1), dom_out(2, y1), dom_out(3, y1), dom_out(4, y1),
dom_out(5, y1), dom_out(6, y1), dom_out(7, y1) and
dom_out(8, y1) are retrieved as

() { }
() { }
() { }
()
() { }
()
() { }
()

1 6 7

1 3

1 11 13

1

1 14

1

1 17

1

_ 1, = ,

 _ 2, =

 _ 3, = ,

 _ 4, =

_ 5, =

_ 6, =

_ 7, =

_ 8, =

dom out y s s

dom out y s

dom out y s s

dom out y

dom out y s

dom out y

dom out y s

dom out y

φ

φ

φ

 (23)

Now how successively various levels of matched services
are found out using the proposed method of service retrieval
is given below. At first, the first level modified service
categories of x1, x2 and y1, namely, m_dom_in(1, x1),
m_dom_in(1, x2) and m_dom_out(1, y1) are computed using
(3) and (4) as Case 1 is satisfied.

() { }
() { }
() { }

1 6 7

2 8

1 6 7

_ _ 1, = ,

_ _ 1,

_ _ 1, = ,

m dom in x s s

m dom in x s

m dom out y s s

=

Now, based on the result of intersection taken on the first
level modified service categories of x1, x2 and y1 the second
level modified service categories of x1, x2 and y1, namely,
m_dom_in(2, x1), m_dom_in(2, x2) and m_dom_out(2, y1)
are computed either using Sub Case 2a or Sub Case 2b.

In this example, the values of m_dom_in(2, x1),
m_dom_in(2, x2) and m_dom_out(2, y1) are computed
using (7) and (8) as Sub Case 2b is satisfied.

()
() ()

{ }
()

() ()
{ }

()
() ()

{ }

1

1 1

3 6 7

2

2 2

8 7

1

1 1

6 7 3

_ _ 2,

_ _ _2, 1,

, ,

_ _ 2,

_ _ _2, 1,

,

_ _ 2,

_ _ _2, 1,

, ,

m dom in x

dom in m dom inx x

s s s

m dom in x

dom in m dom inx x

s s

m dom out y

dom out m dom outy y

s s s

=

=

=

=

=

=

∪

∪

∪

54 C. Surianarayanan et al.

The third level modified service categories of x1, x2
and y1, namely, m_dom_in(3, x1), m_dom_in(3, x2) and
m_dom_out(3, y1) are computed using (5) and (6) as
Sub Case 2a is satisfied.

() () { }
() () { }
() () { }

1 1 11 12

2 2 11

11 131 1

_ _ _3, 3, ,

_ _ _3, 3,

_ _ _ ,3, 3,

m dom in dom inx x s s

m dom in dom inx x s

m dom out dom out s sy y

= =

= =

= =

The fourth level modified service categories of x1, x2
and y1, namely, m_dom_in(4, x1), m_dom_in(4, x2) and
m_dom_out(4, y1) are computed using (5) and (6) as
Sub Case 2a is satisfied.

() ()
() () { }
() ()

1 1

2 2 14

1 1

_ _ _4, 4,

_ _ _4, 4,

_ _ _4, 4,

m dom in dom inx x

m dom in dom inx x s

m dom out dom outy y

φ

φ

= =

= =

= =

The fifth level modified service categories of x1, x2
and y1, namely, m_dom_in(5, x1), m_dom_in(5, x2) and
m_dom_out(5, y1) are computed using (7) and (8) as
Sub Case 2b is satisfied.

()
() ()

{ }
() () ()

{ }
()

() ()
{ }

1

1 1

14

2 2 2

14 7

1

1 1

14

_ _ 5,

_ _ _5, 4,

_ _ _ _ _5, 5, 4,

,

_ _ 5,

_ _ _5, 4,

m dom in x

dom in m dom inx x

s

m dom in dom in m dom inx x x

s s

m dom out y

dom out m dom outy y

s

=

=

=

=

=

=

∪

∪

∪

The sixth level modified service categories of x1, x2
and y1, namely, m_dom_in(6, x1), m_dom_in(6, x2) and
m_dom_out(6, y1) are computed using (5) and (6) as Sub
Case 2a is satisfied.

() () { }
() () { }
() ()

131 1

13 172 2

1 1

_ _ _6, 6,

_ _ _ ,6, 6,

_ _ _6, 6,

m dom in dom in sx x

m dom in dom in s sx x

m dom out dom outy y φ

= =

= =

= =

The seventh level modified service categories of x1, x2
and y1, namely, m_dom_in(7, x1), m_dom_in(7, x2) and
m_dom_out(7, y1) are computed using (7) and (8) as
Sub Case 2b is satisfied.

()
() ()

{ }
() () ()

{ }
()

() ()
{ }

1

1 1

13 17

2 2 2

13 17

1

1 1

17

_ _ 7,

_ _ _7, 6,

,

_ _ _ _ _7, 7, 6,

,

_ _ 7,

_ _ _7, 6,

m dom in x

dom in m dom inx x

s s

m dom in dom in m dom inx x x

s s

m dom out y

dom out m dom outy y

s

=

=

=

=

=

=

∪

∪

∪

The eighth level modified service categories of x1, x2
and y1, namely, m_dom_in(8, x1), m_dom_in(8, x2) and
m_dom_out(8, y1) are computed using (5) and (6) as
Sub Case 2a is satisfied.

() () { }
() () { }
() ()

191 1

19 232 2

1 1

_ _ _8, 8,

_ _ _ ,8, 8,

_ _ _8, 8,

m dom in dom in sx x

m dom in dom in s sx x

m dom out dom outy y φ

= =

= =

= =

Now, various matched service categories of t,
namely, equal(t), direct_plugin(t), indirect_plugin(t),
direct_subsumes(t), indirect_subsumes(t), sibling(t),
partial-parent(t) and grandparent(t) are computed using (9)
to (16) as follows.

() =equal t φ

{ }7_ ()direct plugin t s=

{ }11_ ()indirect plugin t s=

_ ()direct subsumes t φ=

{ }14_ ()indirect subsumes t s=

()sibling t φ=

{ }17- ()partial parent t s=

()grandparent t φ=

As grandparent(t) = φ, we define partial(t) using (19)
(as Case 3 is satisfied).

{ }19()partial t s=

Thus, service retrieval results in nine different kinds of
matched service categories for a given task. Further, RDoM
can take the values, equal, direct_plugin, indirect_plugin,
direct_subsumes, indirect_subsumes, sibling, partial-parent
and grandparent (here partial or none can also be included).
Based on the strictness of similarity requirements of
applications, the value of RDoM is specified and
accordingly matched results up to the given RDoM are
returned. For example, if RDoM is direct_subsumes,
then matched results up to direct_subsumes (including
direct_subsumes) are returned.

3.2 Non-functional selection

For each task in the workflow, its respective service class is
discovered using functional discovery. In non-functional
selection, the best service for each task is selected from its
respective service class based on non-functional attributes
of services. As mentioned earlier, to reduce the time
complexity of global planning methods, it is proposed to
optimise the non-functional stage using local selection
method. Local selection method divides the problem of
selecting best service combination for a given workflow
into n sub problems where n denotes the number of tasks
present in the workflow. Besides QoS constraints, service

 Towards quicker discovery and selection of web services considering required degree of match 55

consumers may also specify their preferences over different
QoS attributes as in the query: find a travel plan service to
plan Malaysian Package trip such that the cost of service is
<=$500 and response time is <10 seconds with 80%
preference to response time and 20% preference to cost.
The user-defined preferences are captured in the form of a
utility function which is used to select the best service of a
task.

The non-functional selection is carried out in two steps,
namely, decomposition of constraints and service selection.
In decomposition of constraints, the sub problems are
constructed by decomposing the given global QoS
constraints into local constraints and assigning the local
constraints to individual tasks. In service selection, each sub
problem is resolved to find a service of maximum utility as
the best service for a particular task from its respective
service class subject to its local constraints.

3.2.1 Decomposition of constraints

In decomposition of constraints each given global constraint
is decomposed into local constraints and the local
constraints are assigned to the tasks present in the workflow.
The proposed method of decomposing global constraints
into local constraints is based on the extreme (minimum and
maximum) values of QoS attributes of the service classes
and the global constraints.

The method of decomposing constraints is
explained using sequential workflows and it can be
employed to any combinational workflow after the
conversion of combinational workflow into sequential
workflow. To show the implementation of the proposed
method of decomposition to combinational workflows,
a typical case, namely, decomposing constraints to a
combinational workflow having parallel units is presented
at the end of this sub section. As negative attributes
(negative attributes are attributes whose values should be
minimised) such as response time and cost gain much
significance in service-based applications, the process of
decomposition is described using any kth negative attribute
denoted by qk and its global constraint denoted by Gk.

A service class contains many functionally similar
services with varying QoS attributes. So, the value of a QoS
attribute of a service class ranges from a minimum to a
maximum. Let Qmax(j, k) denote the maximum value of qk of
jth service class. Let Qmin(j, k) denote the minimum value of
qk of jth service class. Now the QoS attributes of workflow
are computed based on the QoS attributes of service classes.
Let max ()Q k′ and min ()Q k′ represent the maximum and
minimum value of qk of the given workflow respectively.
The values of max ()Q k′ and min ()Q k′ are computed using

max max
1

() (,)
n

j

Q k Q j k
=

′ =∑ (24)

min min
1

() (,)
n

j

Q k Q j k
=

′ =∑ (25)

For a given global constraint, the local constraints are
computed in an iterative manner. The iteration starts with
initial values assigned to local constraints and it continues
till the sum of local constraints is within 90% to 100 % of
the global constraint (i.e., the given global constraint is
utilised to its 90% to 100%). The iteration process is given
below.

Let constraint(j, k) denote the local constraint of qk of jth
service class.

The initial values of constraints of qk for all service
classes are computed using

min max

(,)
(,) (,)

, 1
2

constraint j k
Q j k Q j k

j n
+

= ≤ ≤
 (26)

After computing the initial values of constraints, the values
are summed and the sum is compared against the condition,

1

0.9 (,) .
n

k k
j

G constraint j k G
=

≤ ≤∑ The comparison results

in three cases.

Case 1:
1

(,) 0.9
n

k
j

constraint j k G
=

<∑

In this case, for each jth service class, the value
constraint(j, k) is increased by 10% of its current value.
Then, the newly computed constraint values are summed
and the sum is checked against the condition,

1

0.9 (,) .
n

k k
j

G constraint j k G
=

≤ ≤∑ This process is repeated

until
1

(,)
n

j

constraint j k
=
∑ satisfies the above condition.

Case 2:
1

(,)
n

k
j

constraint j k G
=

>∑

In this case, for each jth service class, the value
constraint(j, k) is decreased by 10% of its current value.
Then, the newly computed constraint values are summed
and the sum is checked against the condition,

1

0.9 (,) .
n

k k
j

G constraint j k G
=

≤ ≤∑ This process is repeated

until
1

(,)
n

j

constraint j k
=
∑ satisfies the above condition.

Case 3:
1

0.9 (,)
n

k k
j

G constraint j k G
=

≤ ≤∑

In this case, the initial values of constraints satisfy the

condition,
1

0.9 (,)
n

k k
j

G constraint j k G
=

≤ ≤∑ and there is no

further change in the values of constraints.

56 C. Surianarayanan et al.

The pseudo code describing the above cases is given
below.

If
1

((,) 0.9)
n

k
j

constraint j k G
=

<∑

{

while
1

((,) 0.9)
n

k
j

constraint j k G
=

<∑

 {
 for (j = 1; j ≤ n; j = j + 1)
 //add 10% of constraint(j, k) to constraint(j, k)
 constraint(j, k) = constraint(j, k) + 0.1 × constraint(j, k)
 }
}

Elseif
1

((,))
n

k
j

constraint j k G
=

>∑

{

while
1

((,))
n

k
j

constraint j k G
=

>∑

 {
 for (j = 1; j ≤ n; j = j + 1)
 //deduct 10% of constraint(j, k) from constraint(j, k)
 constraint(j, k) = constraint(j, k) – 0.1 × constraint(j, k)
 }
}
else
{//no change in the initial values of the constraints}

At last one can verify that the condition

1

0.9 (,)
n

k k
j

G constraint j k G
=

≤ ≤∑ is satisfied.

Thus the given global constraint of qk is decomposed
into local constraints and the local constraints are assigned
to all service classes present in the workflow.

Further, as mentioned earlier, how the proposed method
of decomposing constraints is implemented to a
combinational workflow having parallel units is described
as a typical case.

3.2.1.1 Typical case: decomposing constraints to a
combinational workflow having parallel units

Consider a typical combinational workflow denoted by W
having parallel units (or AND units) as given in Figure 6. A

parallel unit basically consists of more than one path of
tasks and all paths will be executed simultaneously. As in
Figure 6, W contains x number of sequential tasks, denoted
by t1, t2, t3, ..., tx and y number of parallel units denoted by
u1, u2, u3, ..., uy. Further, in Figure 6, ‘AS’ denotes AND
split and ‘AJ’ denotes AND join. The decomposition of
constraints to all tasks of the given workflow is performed
using three steps, namely, conversion of combinational
workflow into its equivalent sequential workflow,
decomposition of constraints to the converted sequential
workflow and derivation of constraints to all tasks of the
given combinational workflow.

Step 1: Conversion of combinational workflow into its
equivalent sequential workflow

The given workflow is converted into its equivalent
sequential workflow by converting each parallel unit into its
equivalent sequential task. The conversion of a parallel unit
into its sequential task is based on the method of computing
QoS attributes for parallel unit.

Consider a typical parallel unit, u as given in Figure 7.
Let l denote the number of paths in u. Let mi, 1 ≤ i ≤ l be the
number of tasks in the ith path. Let ‘pi’ denote the ith path in
u. Let tij denote the jth task of pi. Let denote qk denote kth
negative attribute. Let min_qk(pi) and max_qk(pi) denote the
minimum and maximum value of qk of pi. Let min_qk(tij)
and max_qk(tij) denote the minimum and maximum values
of qk of tij.

The values of min_qk(pi) and max_qk(pi) are calculated
using

() ()
1

min _ min _ , 1,2, ,
im

ijk i k
j

tq p q i l
=

= =∑ … (27)

() ()
1

max _ max _ , 1,2, ,
im

ijk i k
j

tq p q i l
=

= =∑ … (28)

Let min_qk(u) and max_qk(u) denote the minimum and
maximum value of qk of u. The values of min_qk(u) and
max_qk(u) are computed using

(){ }min _ () max 1min _k k iq u i lq p= ≤ ≤ (29)

(){ }max _ () max 1max _k k iq u i lq p= ≤ ≤ (30)

 Towards quicker discovery and selection of web services considering required degree of match 57

Figure 6 Typical combinational workflow having parallel units (W)

Figure 7 Typical parallel unit (u)

Figure 8 Converted sequential workflow (W′)

Now, the parallel unit u is replaced by its equivalent
sequential task called converted-task whose minimum and
maximum values of qk are equal to min_qk(u) and max_qk(u)
respectively given by (29) and (30).

Step 2: Decomposition of constraints to the converted
sequential workflow

The previous step results in a sequential workflow, denoted
by W′ which is equivalent to the given combinational
workflow. As shown in Figure 8, W′ contains a set of
original sequential tasks present in the given workflow and
a set of converted-tasks. Let t1, t2, t3, ..., tx denote the
original sequential tasks and 1 2 3, , , ..., yt t t t′ ′ ′ ′ denote the
converted-tasks in W′. In this step, the given global
constraint of qk, denoted by Gk is decomposed into local

constraints and assigned to tasks and converted-tasks
present in W′ using the proposed method of decomposition.

Step 3: Derivation of constraints to all tasks of the given
combinational workflow

Each converted-task is associated with its respective parallel
unit. Let us consider a converted-task t′ in W′. Let u denote
the parallel unit associated with t′. Let constraint_qk(t′)
denote the constraint of qk of t′. Let constraint_qk(u) denote
the constraint of qk of u. As u is equivalent to t′, one can
write

_ () _ ()k kconstraint q u constraint q t′= (31)

Now from the constraint_qk(u), the constraints of paths
present in the unit are computed. As all the paths of tasks
present in a parallel unit are executed in parallel, the

58 C. Surianarayanan et al.

constraint of qk of each ith path, is same as constraint_qk(u).
Let constraint_qk(pi) denote the constraint of qk of pi which
is computed as

()_ _ (), 1,2, ,k i kconstraint q p constraint q u i l= = …

Now, the constraints of qk of all tasks present in pi are
computed from constraint_qk(pi) using the proposed method
of decomposition.

Thus, the proposed method of decomposition can be
implemented to combinational workflows having parallel
units.

3.2.2 Service selection

After assigning local constraints to individual tasks of the
workflow, each sub problem is formulated to select a
service of maximum utility as the best service for a
particular task from its respective service class subject to its
local constraints. In our work, it is proposed to adopt the
method presented in Mohammad and Thomas (2009) for the
computation of utility. In this method, preferences of users
over different QoS attributes are captured as a utility
function using simple additive weighting (SAW) technique
(Paul and Ching-Lai, 1995). The method computes the
utility of say an ith service of jth service class which satisfies
the local constraints of its service class (i.e., jth service class)
using

() ()max

max min1

(,)
() ()

r
jik

ji k
k

sQ j k q
sU w

Q k Q k=

−
= ×

′ ′−∑ (32)

In (32), max ()Q k′ represents the maximum value of qk of the
given workflow (the value of max ()Q k′ is computed as sum
of maximum values of qk of all service classes) and min ()Q k′
represents the minimum value of qk of the given workflow
(the value of min ()Q k′ is computed as the sum of minimum
values of qk of all service classes). Further, in (32), Qmax(j,
k) represents the maximum value of qk of jth service class,
qk(sji) represents the value of qk of ith service of jth service
class and wk represents the weight of qk. The utility function

is subject to the condition,
1

1
r

k
k

w
=

=∑ where r denote the

number of negative attributes.
The utility of each service of a service class which

satisfies the local constraints of that service class is
computed using (32). For each task, the service which
produces the maximum utility is found out as the best
service from the utility values of all services of that service
class using searching technique. Further, indexing of QoS
values based on service ID is used to speed up the searching
while finding the best service.

4 Experimentation

4.1 Implementation setup

The proposed approach is implemented as in Figure 9. The
two stages of the proposed approach are shown as two
major parts (functional discovery and non-functional
selection) in Figure 9. In functional discovery, prior to
querying (i.e., prior to the arrival of query/workflow),
semantic relations among input and output parameters of all
services in the service repository are computed using Jena
API and Pellet reasoner. Semantic relations among the
input parameters of all services are computed as input
service category and the semantic relations among the
output parameters of services are computed as output
service category. The input and output service categories
are archived in Excel files. At the start up of concerned
composition-based application itself, two hash-based
indices, namely, output index and input index are created
using the pre-computed output and input service categories.
The output and input parameters of services are used as keys
of output index and input index respectively. During
querying, the input workflow for which discovery has to be
done is given as input to service retrieval module. This
module interacts with the indices and retrieves a set of
service classes.

The service classes obtained in functional discovery are
given as inputs to decomposition module of non-functional
selection along with the global constraints of users. While
decomposing constraints, the extreme values of QoS
attributes of different service classes are retrieved from QoS
repository and retrieval of QoS is an external process to
service selection. As the selection of best service of each
task is independent, the selection of best services for all
tasks of the workflow is executed simultaneously using
multiple threads by the selection module. Ultimately the
best services selected for all tasks are combined and
returned as the best service combination for the given
workflow.

4.2 Objectives and test collection

There are five objectives of experimentation. The first one is
to find the time taken by the proposed method for functional
discovery and compare it with conventional approaches.
The second one is to find the time taken by the proposed
method for non-functional selection and compare it with
conventional approaches. The third objective is a special
case which tests the computation time taken for
decomposing constraints to combinational workflows
having parallel units. The fourth one is to test the quality of
results produced in functional discovery and non-functional
selection of the proposed approach against the standards.
The fifth objective is to compare the results obtained using
proposed approach with existing similar approaches.

 Towards quicker discovery and selection of web services considering required degree of match 59

Figure 9 Implementation setup of the proposed method

Two test collections, namely, Test_Collection_1 and
Test_Collection_2 are constructed to conduct experiments
related to functional discovery. Test_Collection_1 is
constructed using 800 services collected from the publicly
available OWL-S service retrieval test collection
Version-3(OWLS-TC3). Using Test_Collection_1 as base,
Test_Collection_2 containing 10,000 services is
constructed. The above test collections contain services
from 7 different domains, namely, education, medical care,
food, travel, communication, economy and weapons.
Semantic relations among input and output parameters are
pre-computed and service categories are archived.

To conduct experiments for selection stage, QoS dataset
from http://www.uoguelph.ca/~qmahmoud/qws/index.html/
is used. This dataset contains nine QoS attributes of 2,500
real web services. The QoS attributes include response time,
availability, throughput, likelihood of success, reliability,
compliance, best practices, latency and documentation.
Using this dataset as base, QoS data have been created for a

collection of 10,000 services. The QoS data are archived in
Excel.

Experiments are performed on a laptop with Intel
Pentium(R) Dual-Core, 2.20 GHz CPU, 3.0 GB memory
and Windows 7 Ultimate Operating System. The proposed
approach is implemented using J2EE environment.

4.3 Results and discussions

4.3.1 Computation time of functional discovery

The computation time of functional discovery of the
proposed method (hash index-based) is analysed by varying
the number of services. To study the influence of indexing
in computation time, the computation time of functional
discovery of the proposed method is compared with two
other methods, namely, sequential method and sequential
method with pre-computed semantic relations. Three
experiments are conducted to study the computation time of
functional discovery using the above methods.

60 C. Surianarayanan et al.

In an experiment computation time of functional
discovery is analysed using sequential method by varying
the number of services. To find matched services of a given
task, the inputs and outputs of the task is matched with that
of each available service in the service repository. During
matching the semantic relations among the concepts of the
task and available services are found out using Pellet
reasoner. In this method, the semantic reasoning and
matching is performed in online with the query. This
experiment is tested using Test_Collection_1. The
computation time of functional discovery of sequential
method with respect to number services is given in Table 3
as well as in Figure 10. From Table 3 and Figure 10, the
computation time of functional discovery is found to
increase linearly with increase in number of services.
Further, the average computation time involved in single
semantic match is found to be 9.7239 seconds. In real
business applications, as several services have to be
discovered and composed in complex chain, invoking
semantic reasoner in online with the query becomes
impractical. Hence, we suggest avoiding semantic reasoning
during querying.

Another experiment is conducted using sequential
method with pre-computed semantic relations. In this
method, two pre-computed service categories, namely,
output service category and input service category are
created prior to querying. In the output service
category, against each output parameter, its various
semantically related matches, namely equal, direct_plugin,
indirect_plugin, direct_subsumes, indirect_subsumes,
sibling, partial-parent and grandparent are stored.
Similarly, in the input service category, against each input
parameter, its various semantically related matches are

stored. The pre-computed service categories may be
archived in different formats such text files, Excel files,
database files, etc. In our experiment, the pre-computed
values are stored in Excel file. Time taken for discovering
matched services by sequential method with pre-computed
semantic relations is split into two components, namely,
time required to load the pre-computed semantic relations
and time taken to retrieve the matched services. The
computation time of sequential method with pre-computed
semantic relations with respect to number of services (using
Test_Collection_2) is given in Table 4. From Table 4, both
time taken for loading the semantic relations and time taken
for retrieving matched services are found to increase
linearly with number of services. The influence of loading
time can be prevented by loading the semantic relations
prior to querying itself. The more influential part is retrieval
time which is found to increase with number of services.

Table 3 Time taken for functional discovery by sequential
method (using Test_Collection_1)

of services Time taken for discovery (in seconds)

100 482
200 1,195
300 2,396
400 3,755
500 5,275
600 7,378
700 9,185
800 10,923

Figure 10 Time taken for functional discovery by sequential method

 Towards quicker discovery and selection of web services considering required degree of match 61

Table 4 Time taken for functional discovery by sequential
method with pre-computed semantic relations
(using Test_Collection_2)

of
services

Loading time of pre-computed
service categories
(in milli seconds)

Retrieval time
(in milli seconds)

1,000 2,926 75.872
2,000 4,327 90.522
3,000 5,415 102.82
4,000 7,855 121.954
5,000 9,257 134.968
6,000 11,357 149.102
7,000 12,660 165.314
8,000 13,957 187.418
9,000 15,073 204.342
10,000 17,125 221.665

Another experiment is conducted to find the computation
time of discovering services using the proposed method. In
this method, immediately after loading the pre-computed
service categories, in-memory hash-based input index and
output index are created with input and output parameters as
keys. In either index, each key of the index is mapped to its
semantically related service categories. During querying
matched services are retrieved from indices using service
retrieval described in Subsection 3.1.2. The time taken for
functional discovery by the proposed method is split into
three components, namely, time required to load the
pre-computed service categories, time required to create
hash-based indices and time required to retrieve matched
services using indices. The time taken for functional
discovery by the proposed method with respect to number
of services is given in Table 5. From Table 5, the time taken
to load the pre-computed service categories and time taken
to create hash indices are found to increase with respect to
number of services. As loading of pre-computed service
categories and creation of indices can be performed prior to
querying their effect on computation time can be eliminated.
Out of the three components, the most influential part is the

time taken for retrieval of services using indices. From
Table 5, the time taken to retrieve matched services using
indices is found to remain almost constant with respect to
number of services. This is an interesting feature achieved
with hash-based indices. Also, for comparison, the time
taken for retrieval of matched services by the sequential
method with pre-computed semantic relations and the
proposed method with respect to number of services is
presented in Figure 11. From Figure 11, the retrieval time
taken by the proposed method is found to be very low when
compared to that of sequential method with pre-computed
semantic relations. Further, the retrieval time of the
proposed method remains constant with respect to
number of services. Here the hashing of indices helps in
achieving time complexity of O(1) irrespective of number of
services.

4.3.2 Computation time of non-functional selection

The time characteristics of non-functional selection are
evaluated by studying the time characteristics of
decomposition of constraints and service selection. The
proposed methods for decomposing constraints and
selecting services are implemented in Java and a series of
experiments have been conducted. The time taken for
decomposing constraints is independent of number of
services present in a service class as the method is based on
the extreme values of QoS attributes of service classes.
Hence, the time taken for decomposing constraints is
analysed by varying the number of service classes in a
workflow. Time taken for decomposing a given global
constraint to a sequential workflow by varying the number
of service classes from 10 to 100 in steps of 10 is given in
Table 6 and Figure 12. From Table 6 and Figure 12, the
time taken for decomposing constraints with respect to
number of service classes is found to increase very slowly.
For example, when the number of service classes is
increased from 10 to 100, the time taken for decomposing a
constraint is found to increase from 376 micro seconds to
726 micro seconds.

Table 5 Time taken for functional discovery by proposed method (hash index-based) using Test_Collection_2

of
services

Loading time of pre-computed
service categories (in milli seconds)

Time required to create hash
indices (in milli seconds)

Retrieval time using
indexing (in milli seconds)

1,000 2,926 1,338 1.025
2,000 4,327 2,066 1.009
3,000 5,415 3,072 1.121
4,000 7,855 3,301 0.988
5,000 9,257 3,736 1.045
6,000 11,357 4,174 1.110
7,000 12,660 4,944 0.974
8,000 13,957 5,415 1.09
9,000 15,073 5,997 0.935
10,000 17,125 6,529 0.992

62 C. Surianarayanan et al.

Figure 11 Time taken for retrieving services (during functional discovery) by proposed method and sequential method with pre-computed
semantic relations

Figure 12 Time taken for decomposing constraints to a sequential workflow with respect to number of service classes

Table 6 Time taken for decomposing constraints to sequential

workflow with respect to number of service classes

Number of service
classes

Time taken for decomposition
(in micro seconds)

10 376
20 445
30 480
40 517
50 533
60 595
70 622
80 695
90 706
100 726

The time taken for selecting the best service for a service
class depends on the number of services present in that
service class (as selection is performed by checking the QoS
attributes of individual services against local constraints).
As service selection is performed simultaneously for all
service classes in multithreaded fashion, the time taken for
service selection will be equal to the time taken for selecting
the best service for a single service class.

Just prior to selection, the QoS data of services
which are archived in Excel are brought to the concerned
service-based application. To enhance the performance of
search process, the QoS values of services are hash-indexed
and this index is called as QoS hash index as in Figure 9. In
QoS hash index, the service_ID is used as the key and each
key is mapped to its QoS values. During non-functional

 Towards quicker discovery and selection of web services considering required degree of match 63

selection, the QoS values of each service present in a
service class are checked for their compliance with the local
constraints. If a service is found to satisfy the local
constraints of its service class, then its utility is computed.
By checking the utilities of all services, the service having
the maximum utility is found out as the best service for a
service class.

To provide an insight on how hash indexing helps in
achieving constant time while accessing QoS values of a
service, two experiments are conducted. In one experiment,
time taken for loading the QoS values into memory and time
taken for retrieving a service using sequential search (i.e.,
without hash index) are analysed. The time taken for
retrieving first, middle and last services by varying the
number of services from 1,000 to 10,000 in steps of 1,000 is
given in Table 7 along with time taken for loading QoS
values. In another experiment, the time taken for loading

QoS values into memory, time taken for creating QoS hash
index and time taken for accessing a service from the QoS
hash index with respect to number of services are analysed.
The time taken for retrieving first, middle and last services
by varying the number of services from 1,000 to 10,000 in
steps of 1,000 using QoS hash index (index-based search) is
given in Table 8 along with time taken for loading QoS
values and time taken for creating indices. While comparing
Tables 7 and 8, QoS hash is found to help in achieving
almost constant access time with respect to number of
services. For comparison, the time taken for accessing an
element (say, last element) with respect to number of
services, using sequential method and index-based method
is given in Figure 13. From Figure 13, it is found that access
time of sequential method increases with respect to number
of services whereas the access time of index-based method
remains constant with respect to number of services.

Table 7 Time required for retrieving a service using sequential search (without QoS hash)

Retrieval time (in micro seconds)
of services Time to load QoS

(in milli seconds) First service Middle service Last service

1,000 254 31 103 181
2,000 273 32 194 298
3,000 287 33 363 705
4,000 280 37 489 967
5,000 285 38 579 1,225
6,000 298 31 568 1,213
7,000 304 32 655 1,389
8,000 307 31 670 1,335
9,000 329 31 754 1,576
10,000 331 35 1,035 2,134

Table 8 Time required for retrieving a service using QoS hash index

Time taken to retrieve a service from hash (in micro seconds) # of
services

Time taken to load QoS values
(in milli seconds)

Time taken to create hash
(in micro seconds) First service Middle service Last service

1,000 254 28,293 5 7 4
2,000 273 33,679 3 7 3
3,000 287 57,233 4 6 5
4,000 280 56,639 4 6 4
5,000 285 54,282 4 6 5
6,000 298 50,584 3 8 5
7,000 304 55,028 4 8 4
8,000 307 58,722 5 7 4
9,000 329 63,897 6 7 3
10,000 331 85,311 4 7 4

64 C. Surianarayanan et al.

Figure 13 Time taken for accessing an element using hash index-based method (QoS hash index) and sequential method

Table 9 Time taken for finding the best service by sequential search and index-based search (using QoS hash)

Time taken to select the best service
of
services

Time to load QoS
(in milli seconds)

Time to create hash
(in micro seconds) QoS hash index-based search

(in micro seconds)
Sequential search
(in micro seconds)

1,000 254 28,293 1,489 4,275
2,000 273 33,679 2,383 7,161
3,000 287 57,233 3,403 11,201
4,000 280 56,639 3,907 14,642
5,000 285 54,282 4,586 17,752
6,000 298 50,584 5,238 22,468
7,000 304 55,028 5,831 27,661
8,000 307 58,722 6,589 31,217
9,000 329 63,897 7,588 34,625
10,000 331 85,311 7,991 38,197

Figure 14 Time taken for finding the best service using index-based search (QoS hash index) and sequential search

 Towards quicker discovery and selection of web services considering required degree of match 65

Also, the time taken for finding the best service from a
service class with respect to number of services using
sequential search and index-based search is given in Table 9
and Figure 14. Sequential search involves two time
components, namely, time taken to load the QoS values and
time taken to search whereas index-based search involves
three components, namely, time taken to load the QoS
values, time taken to create QoS hash and time taken to
search using index. Both the methods have loading
component in common and as loading of QoS is done prior
to querying, it will not affect the time taken for selecting the
best service during querying. Similarly in the case of
index-based search, as index is created prior to querying, it
will not affect the time taken for selecting the best service.
The influential component is the time taken for searching
and finding the best service based on constraints and utility.
From Table 9 and Figure 14, the time taken to find the best
service using index-based search is found to be very low
when compared to sequential search. From Table 9, when
the number of services is increased from 1,000 to 10,000,
the time taken for selecting the best service using
index-based search is found to increase very slowly
(from 1.489 milli seconds to 7.991 milli seconds) when
compared to that of sequential search (from 4.275 milli
seconds to 38.197 milli seconds). As the variation in time
taken for selecting the best service using the index-based
search is very slow with respect to number of services, it is
suggested to use hash-based index while searching for the
best service.

4.3.3 Computation time of decomposing constraints
to combinational workflows having parallel
units

To study the time variation in decomposing constraints to a
combinational workflow having parallel units, the number
of parallel units in the workflow is increased from 1 to 10.
Each parallel unit contains two paths of tasks and each path
contains five tasks/service classes. The variation in time
taken for decomposing constraints to a combinational
workflow having parallel units with respect to number of
parallel units is given in Table 10 and Figure 15.
From Table 10 and Figure 15, the computation time of
decomposing constraints with respect to number of parallel
units is found to increase very slowly. For example, when
the number of parallel units is increased from 1 to 10, the
time taken for decomposing constraints is found to increase
from 4.4835 milli seconds to 10.3435 milli seconds.

Table 10 Time taken for decomposing constraints to a
combinational workflow having parallel units

of parallel units Time taken (in milli seconds)

1 4.4835
2 5.1725
3 6.0535
4 6.712
5 7.1605
6 7.8105
7 8.3105
8 8.9225
9 9.7155
10 10.3435

Figure 15 Time taken for decomposing constraints to a combinational workflow having parallel units

66 C. Surianarayanan et al.

4.3.4 Testing the accuracy of results of proposed
approach

The accuracy of results obtained with functional discovery
of the proposed approach is compared with standard
sequential method using two evaluation measures, namely,
precision and recall. A set of test queries has been chosen
and for each test query its matched services are discovered
using sequential method and proposed method of functional
discovery. For a query, let s

rrN and s
rN denote the number

of relevant services retrieved and the number of services
retrieved using sequential method. Similarly, for a query, let

p
rrN and p

rN denote the number of relevant services
retrieved and the number of services retrieved using
proposed method respectively. Further, for a query, let Ntr
denotes the actual number of relevant services present in the
test collection. For each query, let Ps and Pp denote the
precision of sequential and proposed methods respectively.
For each query, let Rs and Rp denote the recall of sequential
and proposed methods respectively. The values of Ps, Rs, Pp
and Rp are computed as follows.

100
s
rr

s s
r

N
P

N
= × (33)

100
s
rr

s
tr

N
R

N
= × (34)

100
p
rr

p p
r

N
P

N
= × (35)

100
p
rr

p
tr

N
R

N
= × (36)

Eight test queries have been chosen. Matched services for
these queries have been found out using both the methods.
The values of , , , s s p p

rr r rr rN N N N and Ntr obtained for
different test queries are given in Table 11 along with
details of queries. Out of eight queries, the precision and
recall for queries Q2, Q7 and Q8 are found to be zero for
both methods and for remaining queries, the precision and
recall are found to be 100% for both methods. Hence the
precision and recall of discovery are not altered by indexing.
Further, the recall and precision of both the methods are
same because the way of computing DoM among service
concepts is same for both methods.

The accuracy of non-functional selection of the
proposed method is evaluated using a measure called
optimality_factor. We define optimality_factor as the ratio
of utility obtained using the proposed method to the utility
obtained using global selection. In our work, to find the
utility of global selection, we adopt the method presented in
Mohammad and Thomas (2009) where utility of a
composite service is computed as

max

max min1

() ()
() ()

r
k

CS k
k

Q k q CS
U w

Q k Q k=

′ −
= ×

′ ′−∑ (37)

In (37), UCS denotes the utility of a composite service (CS)
obtained using global approach, max ()Q k′ denotes the
maximum value of kth attribute of the given workflow (this
is computed as the sum of maximum values of kth attribute
of all service classes present in the workflow) and

min ()Q k′ denotes the minimum value of kth attribute of the
given workflow (this is computed as the sum of minimum
values of kth attribute of all service classes present in the
workflow), qk(CS) denotes value of kth attribute of CS and
wk represents the weight of kth attribute.

Table 11 Values of , , , s s p
tr r rr rN N N N and p

rrN for different test queries

Query ID Outputs of query Inputs of query Ontologies of query Ntr s
rN s

rrN p
rN p

rrN

Q1 Book Author Books.owl 2 2 2 2 2
Q2 Price camera Extendedcamera.owl, concept.owl 0 0 0 0 0
Q3 Price Three_wheeled_Car Concept.owl, my_ontology.owl 3 3 3 3 3
Q4 Drinks Price Concept.owl,

mid_level_ontology.owl
1 1 1 1 1

Q5 Whiskey price Concept.owl,
mid_level_ontology.owl

4 4 4 4 4

Q6 Hotel city travel.owl 1 1 1 1 1
Q7 Weapon Geopolitical entity portal.owl, SUMO.owl,

mid_level_ontology.owl
0 0 0 0 0

Q8 PatientTransport
Acknowledgement

PatientTransportProfile,
PatientTransport_chosen

hospital

Hospitalphysicianontology.owl 0 0 0 0 0

 Towards quicker discovery and selection of web services considering required degree of match 67

Figure 16 Optimality_factor with respect to number of service classes

In the proposed method, the utility of any ith service of jth
service class is computed using (32). Using this formula,
utility of the best service of jth service class can be found
out. In a similar manner, the utilities of the best service of
all service classes of the given workflow are computed and
total of all utilities is taken as the utility obtained using
proposed method. Let Up denote the utility obtained using
proposed method. Now, we define optimality_factor as
the ratio of Up to UCS. The value of optimality_factor is
computed by varying the number of service classes (keeping
number of services per service class as 50) and the results
are given in Table 12 and in Figure 16. From Table 12, the
average optimality_factor is found to be 99.64%.

Table 12 optimality_factor with respect to number of service
classes

of service
classes UCS Up

optimality_factor
(%)

2 0.969802 0.969802 100
3 0.964901 0.954574 98.929735
4 0.960232 0.957941 99.761412
5 0.970998 0.970998 100
6 0.979542 0.967806 98.801889
7 0.981256 0.981256 100
8 0.966363 0.966363 100

4.3.5 Comparison of proposed approach with
existing approaches

To compare the performance of functional discovery of the
proposed approach, the method presented in Skoutas et al.
(2008) has been chosen. The time taken for functional
discovery by the proposed method with respect to number

of services is given in Table 5. From Table 5, the retrieval
time of the proposed method to find all matched services of
a query is found to be constant and its average value is
1.0289 milli seconds. The retrieval time of proposed method
is compared to Skoutas et al. (2008). Though Skoutas et al.
(2008) saves the processing time significantly while finding
top-k matches where k ∈ {1, 50, 500}, when all matches of
a query is required to be discovered, then there is a
significant increase in processing time ranging from around
40 milli seconds to 150 milli seconds (interpreted from the
centralised approach of Skoutas et al.’s method). Whereas in
our proposed method, in a single retrieval itself, all
categories of matched services of a query are obtained with
the help of unique indexing. With a typical test collection,
the average retrieval time is found to be 1.0289 milli
seconds to retrieve all matches of a query.

To compare the performance of non-functional selection
of the proposed approach, the method proposed in
Mohammad and Thomas (2009) has been chosen. The time
involved in the non-functional selection of the proposed
approach with respect to number of service classes is
compared to that of Mohammad and Thomas (2009). In our
approach the time involved in non-functional selection is
computed by finding the sum of time involved in
decomposition of constraints and time involved in service
selection. By keeping number of services as 500 and
number of constraints as 3, the time taken by non-functional
selection is computed by varying the number of service
classes from 10 to 100. The variation in computation time of
non-functional selection of the proposed approach is
compared to that of Mohammad and Thomas (2009) as
given in Table 13. From Table 13, the variation in
computation time of proposed approach is found to be very
small and negligible when compared to that of Mohammad
and Thomas (2009).

68 C. Surianarayanan et al.

Table 13 Time taken for non-functional selection – proposed approach versus Mohammad and Thomas (2009) approach with respect to
number of service classes

Computation time (in milli seconds)
of service classes # of constraints # of services

Mohammad and Thomas (2009) approach Proposed approach

10–100 3 500 500–20,000 1.146–1.557

5 Conclusions

This paper presents a better approach for identifying best
services for composition based on functional discovery and
non-functional selection. The paper presents a unique
indexing of pre-computed semantic relations for input and
output parameters of all services in a repository. More
specifically the proposed method can handle disparate
similarity demands of client applications in terms of RDoM
and deliver matched services accordingly. RDoM can take
nine different categorical values. The provision of nine
different matches gives better flexibility to service clients in
feeding a desirable value for RDoM. This is another unique
feature of the proposed approach. Further, the usage of two
indices fully eliminates the invoking of semantic reasoning
during querying. A new method for service retrieval using
indices is also presented. The method is efficient in finding
all possible matches according to the given RDoM in
constant time.

The non-functional selection is optimised using a local
selection in multithreaded fashion with a new method
of decomposing QoS constraints. The usage of local
selection, multithreading and QoS hash index enhances the
performance of non-functional selection significantly. The
method of decomposing constraints has a unique feature that
the method is independent of number of services present in
a service class. This is very desirable as any real time
business transaction involves several services from different
domains to be composed quickly.

The proposed method has been implemented and from a
series of experiments the method is found to yield excellent
time characteristics. Also, the accuracy of the method is
evaluated by comparing the results with that of standard
approaches using the evaluation measures, precision, recall
and optimality_factor. The accuracy is found to be not
affected by the optimising techniques. The minimum time
consumption of the method makes it more applicable to
dynamic composition needs.

References
Gao, T., Wang, H., Zheng, N. and Li, F. (2009) ‘An improved way

to facilitate composition-oriented semantic service discovery’,
in International Conference On Computer Engineering and
Technology – ICCET ‘09, Singapore, pp.156–160.

Guo, R., Le, J. and Xia, X. (2005) ‘Capability matching of web
service based on OWL-S’, in Proceedings of the 16th
International Workshop on Database and Expert Systems
Applications, DEXA, IEEE Computer Society, Copenhagen,
Denmark, pp.653–657.

Hong, L. and Hu, J. (2009) ‘A multi-dimension QoS based local
service selection model for service composition’, in Journal
of Networks, Vol. 4, No. 5, pp.351–358, Academy Publisher.

Jin, J., Zhang, Y., Cao, Y. and Zhou, R. (2010) ‘An enhanced QoS
decomposition approach for efficient service composition’,
in 5th International Conference on Computer Science &
Education (ICCSE), Beijing, China, pp.1680–1684.

Kuang, L., Li, Y., Deng, S. 0and Wu, Z. (2007) ‘Inverted
indexing for composition-oriented service discovery’, in IEEE
International Conference on Web Services, Salt Lake City,
Utah, USA, pp.257–264.

Li, J., Zhao, Y., Liu, M., Sun, H. and Ma, D. (2010) ‘An adaptive
heuristic approach for distributed QoS-based service
composition’, in IEEE Symposium on Computers and
Communications, Beijing, China, pp.687–694.

Liu, P., Zhang, J. and Yu, X. (2009) ‘Clustering-based semantic
web service matchmaking with automated knowledge
acquisition’, in Proceedings of the International Conference
on Web Information Systems and Mining (WISM ‘09),
Shanghai, China, pp.261–270.

Mohammad, A. and Thomas, R. (2009) ‘Combining global
optimization with local selection for efficient QoS-aware
service composition’, in Proceedings of the 18th International
Conference on World Wide Web, ACM, New York,
pp.881–890.

Mohammad, A., Thomas, R., Peter, D. and Wolfgang, N. (2008)
‘A scalable approach for QoS-based web service selection’,
in Service-Oriented Computing ICSOC 2008 Workshops,
Springer-Verlag, Berlin, pp.190–199.

Mokhtar, S.B., Kaul, A., Georgantas, N. and Issarny, V. (2006)
‘Towards efficient matching of semantic web
service capabilities’, in International Workshop on Web
Services Modeling and Testing (WS-MaTe), Palermo, Italy,
pp.137–152.

Mokhtar, S.B., Preuveneers, D., Georgantas, N., Issarny, V. and
Berbers, Y. (2008) ‘EASY: efficient semantic service
discovery in pervasive computing environments with QoS
and context support’, in the Journal of Systems and Software,
Elsevier Science Inc., New York, NY, USA, Vol. 81, No. 5,
pp.785–808.

Paolucci, M., Kawamura, T., Payne, T.R. and Sycara, K.
(2002) ‘Semantic matching of web service capabilities’,
in International Semantic Web Conference, Springer Verlag,
LNCS, Sardinia, Italy, Vol. 2342, pp.333–347.

Pathak, J., Koul, N., Caragea, D. and Honavar, V.G. (2005)
‘A framework for semantic web services discovery’,
in the Proceedings of 7th ACM International Workshop on
Web Information and Data Management (WIDM-2005),
Bremen, Germany, ACM, pp.45–50.

Paul, Y.K. and Ching-Lai, H. (1995) ‘Multiple attribute decision
making: an introduction’, in Sage University Paper Series on
Quantitative Applications in the Social Sciences,
ISBN 0-8039-5486-7.

 Towards quicker discovery and selection of web services considering required degree of match 69

Qiu, T. and Li, P. (2008) ‘Web service discovery based on
semantic matchmaking with UDDI’, in the Proceedings of 9th
International Conference for Young Computer Scientists
(ICYCS 2008), IEEE Computer Society, Hunan, China,
pp.1229–1234.

Rozina, C.V., Bianca, P.C., Ioan, S., Mihaela, D., Vlad, A. and
Tudor, D. (2010) ‘an ant-inspired approach for semantic web
service clustering’, in Roedunet 9th International Conference
(RoEduNet) Sibiu, Romania, pp.145–150.

Skoutas, D., Sacharidis, D., Kantere, V. and Sellis, T. (2008)
‘Efficient semantic web service discovery in centralized and
P2P environments’, in the Proceedings of 7th International
Semantic Web Conference (ISWC), Karlsruhe, Germany,
pp.583–598.

Sun, S.X., Zhao, J. and Wang, H. (2010) ‘A negotiation based
approach for service composition’, in Proceedings of the 5th
International Conference on Global Perspectives on Design
Science Research GPIC (DESRIST ‘10), St. Gallen,
Switzerland, pp.381–393.

Zeng, L., Benatallah, B., Marlon, D., Kalagnanam, J. and
Sheng, Q.Z. (2003) ‘Quality driven web services
composition’, in Proceedings of the 12th International
Conference on World Wide Web, ACM Press, Budapest,
Hungary, pp.411–421.

Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J.
and Chang, H. (2004) ‘QoS-aware middleware for web
service composition’, in IEEE Transactions on Software
Engineering, Vol. 30, No. 5, pp.311–327.

Zhag, J., Yu, X., Liu, P. and Wang, Z. (2009) ‘Research on
improving performance of semantic search in UDDI’, in the
Proceedings of WRI GCIS, Global Congress on Intelligent
Systems, IEEE Computer Society, Xiamen, China,
pp.572–576.

Zhou, B., Huang, T., Liu, J. and Shen, M. (2009) ‘Using inverted
indexing to semantic WEB service discovery search model’,
in Proceedings of 5th International Conference on Wireless
Communications, Networking and Mobile Computing,
(WiCom ‘09), IEEE Press, Beijing, China, pp.4872–4875.

Zhu, Z., Yuan, H., Song, J., Bi, J. and Liu, G. (2010) ‘WSSCAN:
a effective approach for web services clustering’,
in Proceedings of International Conference on Computer
Application and System Modeling (ICCASM), Taiyuan, China,
Vol. 5, pp.618–622.

