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Abstract: An approach is proposed for identifying best services for composition based on 
functional and non-functional characteristics of services with a special focus on computational 
optimisation of functional discovery and non-functional selection. Discovery is optimised using a 
unique indexing consists of two indices, one for outputs of services and the other for inputs of 
services. In either index, each key is mapped to its semantically related service categories. The 
fine split of semantic relations into eight categories assists in handling disparate similarity 
demands of service clients efficiently. Also, indexing eliminates semantic reasoning entirely 
during querying. Non-functional selection is optimised using local selection method in 
multithreaded fashion with a new method of decomposing non-functional constraints.  
Further, indexing is used to expedite the searching of finding best services during selection. 
Experimentation results are presented. The minimum time consumption of the method makes it 
more applicable to dynamic composition needs. 
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1 Introduction 

Web service composition is a process in which more than 
one atomic service are combined in a specific pattern to 
accomplish a given business requirement. Any business 
requirement can be represented as a workflow consisting of 
a set of tasks combined in a specific pattern. A task 
represents an abstract function having inputs and outputs. 
The tasks are implemented by web services which are 
offered by service providers. During composition, at first 
the services which could implement the tasks are  
discovered and then they are combined in the mentioned 
pattern to produce the desired business goal. An example 
workflow which represents the query, book an appointment 
with a cardiologist in a hospital located in a particular 
location and book a vehicle to reach the hospital is  
given in Figure 1. The workflow given in Figure 1 contains  
tasks, namely, ‘Find_Hospital’, ‘Find_Cardiologist’, ‘Book_ 
Appointment’, ‘Check_for_Ambulance’, ‘Book_Cab’ and 
‘Book_Ambulance’. In Figure 1, ‘OS’ and ‘OJ’ indicate OR 
Split and OR Join of an OR execution pattern respectively. 
As shown in Figure 1, the tasks, T1, T2, T3 and T4 are 
executed in sequence. After the execution of T4, either T5 or 
T6 will be executed. Like OR pattern, a workflow may 
contain other patterns such as AND, loop, etc. As in  
Figure 1 even services from different domains may be 
combined to meet a given business goal. Complex business 
goals need several services from different domains to be 
discovered and composed in relatively short time. To 
implement service composition efficiently, three critical 
aspects should be considered. They are automation in 
service discovery, incorporation of a particular level of 
similarity between tasks and their implementing services as 
demanded by client applications and non-functional aspects 
of services. 

The prerequisite for composition is the discovery of 
services which implement various tasks of a given 
workflow. Discovery becomes a challenge owing to two 
conflicting aspects, namely, availability of many services 

and dynamic needs of business applications. These two 
aspects demand automation in discovery which has been 
brought by semantic service description languages such as 
Web Ontology Language for Services (OWL-S) (Guo et al., 
2005). These languages allow services to be described with 
explicit semantics in the form of ontological (formal) 
constructs. Semantics makes services machine interpretable 
and brings automation in discovery. Corresponding to 
semantic description, during discovery, a matching 
component has to find the semantic matching between the 
query and each available service with the help of an 
ontology reasoner such as Pellet. The ontology reasoner 
interacts with ontologies and finds various semantic 
relations such as equivalent, plug-in, subsumes and fail 
(Paolucci et al., 2002) among the concepts of the query and 
the available services. Though semantics brings maximum 
automation in discovery, semantic reasoning with 
ontologies is time consuming (Mokhtar et al., 2006). In real 
applications, as many services from different domains have 
to be discovered and composed in a complex chain, the 
performance of semantic discovery becomes a crucial factor 
in deciding the feasibility of dynamic service composition. 
Hence, it is essential to optimise the performance of 
semantic discovery. 

During discovery, the incorporation of a particular level 
of similarity between a task and its implementing service as 
demanded by clients should be considered. In practice, 
discovery approaches such as Skoutas et al. (2008), Zhag et 
al. (2009), Pathak et al. (2005) and Mokhtar et al. (2008) 
compute the similarity between a given task and the 
available services using four levels of degree of match 
(DoM), namely, equivalent, plug-in, subsumes and fail 
described in Paolucci et al. (2002). But these levels of DoM 
may not be suitable to handle all applications as the 
similarity needs of applications are disparate. The 
significance of incorporating required level of similarity is 
illustrated using two examples given below. 

 

Figure 1 An example workflow 
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Consider the task T2 in Figure 1. Let the function of T2 be to 
find the details of a cardiologist in a given hospital. The 
input and the output of the task are hospital and cardiologist 
respectively. Let the fragment of an imaginary ontology 
given in Figure 2 describe the output of T2. During 
discovery, approaches such as Skoutas et al. (2008) will  
find a service returning the details of general physician  
as a matched service of T2 (as according to the given 
fragment of ontology, general physician is a super class of 
cardiologist). Also, methods such as Rozina et al. (2010) 
will find services returning details of gynecologist and child 
specialist as matched services of T2 (as according to the 
given fragment of ontology, gynecologist and child 
specialist are siblings of cardiologist). In reality, T2 cannot 
be implemented by services which return the details of 
general physician or gynecologist or child specialist, though 
general physician, gynecologist and child specialist are 
semantically related to cardiologist. The task, T2 can be 
implemented only by its equivalent matches. 

Figure 2 Fragment of an imaginary ontology 

 

Let us consider another task which performs the function, 
Book tickets in XYZ Airlines to travel from Singapore to 
London on 2nd October 2012. Here the task may be 
implemented using a service offer from an airlines other 
than XYZ Airlines such as ABC Airlines (which provides the 
same function) when seats are not available with XYZ 
Airlines. In this case, though ABC Airlines is sibling of XYZ 
Airlines, the offer from ABC Airlines is acceptable. 

Thus the required degree of match (RDoM) between a 
task and its implementing service is dependent on the nature 
of applications and it should be considered during 
discovery. We refer the minimum level of similarity that 
should exist between a task and its implementing service as 
demanded by a client as RDoM. 

Selection of services for composition based on quality of 
service (QoS) characteristics (which refer to non-functional 
attributes such as response time, availability, latency, etc., 
of services) is essential as users tend to query such as  
find a Malaysian tour planning service whose cost is 
<=$500. In this example, besides the functional 
requirements of tour planning, the cost of service should 

also be considered during composition. To accommodate 
the varying non-functional needs of service clients, service 
providers offer multiple services having same functional 
characteristics but different non-functional characteristics. 
The services which offer the function of same task with 
different QoS would form a service class (Mohammad  
et al., 2008). To accomplish the user’s QoS requirements, it 
is essential to find the best service for each task from its 
corresponding service class based on QoS. 

In view of the above analysis, a new approach which 
identifies the best service combination for composition is 
proposed in two stages, namely, functional discovery and 
non-functional selection. In functional discovery, services 
which implement various tasks of the workflow are 
discovered based on inputs and outputs of tasks according to 
the given RDoM. The functional discovery results in a  
set of service classes which will be given as input to  
non-functional selection. In selection the best service is 
selected for each task from its respective service class based 
on QoS. 

The chief aim of the approach is to reduce the 
computation time of discovery and selection taking into 
account the demands of RDoM and QoS. The approach 
proposes a unique hash-based indexing mechanism to 
enhance the performance of discovery. The approach 
completely eliminates invoking of semantic reasoning 
during querying using two indices, namely, output index 
and input index. In the output index the services are  
indexed by their outputs (i.e., the output parameters of 
services are used as keys). In the input index, the services 
are indexed by their inputs (i.e., the input parameters of 
services are used as keys). In either index, each key is 
mapped to its eight different kinds of semantically related 
service categories, namely, equivalent, direct-plugin, 
indirect-plugin, direct-subsumes, indirect-subsumes, sibling, 
partial-parent and grandparent. The RDoM of client 
applications can be expressed using the above categories. 
As the approach uses hash-based indexing, it achieves time 
complexity of O(1) while retrieving matched services of a 
query. The approach optimises the performance of selection 
using local selection in multithreaded fashion with a new 
method of decomposing QoS constraints. The method of 
decomposing constraints has a unique feature that it is 
independent of number of services present in a service class. 
Also, during selection the speed of searching for the best 
service is enhanced using hash indexing. 

2 Literature survey 

Recently clustering and indexing techniques are used  
to optimise the performance of semantic discovery. 
Clustering-based approaches such as Rozina et al. (2010), 
Liu et al. (2009) and Zhu et al. (2010) partition the available 
services into different groups of similar services. For 
example, the available services may be partitioned as 
‘education group’, ‘weather group’, ‘financial group’, ‘food 
group’, ‘travel group’, etc. When a query arrives, a 
particular cluster which is most similar to the query is 
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identified and semantic matching is employed only to that 
cluster, eliminating all other clusters as irrelevant. Hence, 
clustering-based methods achieve improved performance by 
reducing the number of services that require semantic 
reasoning. However clustering-based methods have to 
perform semantic matching during querying to those 
services which are present in the most similar cluster of the 
query to find matched services of the query. 

Discovery approaches such as Zhou et al. (2009), Kuang 
et al. (2007) and Gao et al. (2009) identify a set of atomic or 
parallel combination of services called ‘candidate services’ 
which can deliver the outputs of a query using output-based 
indexing. The inputs of each candidate service are 
semantically matched with that of query by invoking 
semantic reasoning. Here, semantic reasoning is invoked 
during querying which is time consuming. 

The methods (Skoutas et al., 2008; Qiu and Li, 2008) 
are close to our work with respect to discovery. The method 
(Qiu and Li, 2008) presents an approach for integrating 
semantic features of services into the conventional universal 
description discovery and integration (UDDI) and discovers 
matched services of a query based on semantic similarity of 
service properties. This method uses an ontology concept 
index and similarity data table to speed up the discovery. In 
the similarity data table each ontology concept is mapped to 
its related concepts which have similarity values higher than 
a minimum value. The ontology concept index maps each 
concept to its occurrence locations (service name, inputs 
and outputs) in published services. When a query arrives, 
the semantically related concepts for each concept of the 
query are obtained from similarity data table. Then, services 
which contain the query concepts and their related concepts 
are retrieved from the ontology index. Specifying minimum 
similarity as a numerical value while storing related 
concepts in similarity data table is difficult and compared to 
numeric values, categorical values are more suitable.  
In this method there is no inner split of matched services; 
but a split will help the clients to pick up the most  
desirable match. Further, the method does not present 
experimentation related to computation time of discovery. 
The method (Skoutas et al., 2008) prevents semantic 
reasoning during querying by indexing the subsumption 
relations among concepts in a numerically encoded format 
using two R-Trees, one for inputs and the other for outputs. 
Though the method mainly addresses the discovery of 
services based on functional aspects, it does not take into 
account the sibling or grandparent relations among 
concepts. Also, the methods (Skoutas et al., 2008; Qiu and 
Li, 2008) did not address selection of services based on 
QoS. 

As an alternative to the above approaches, the proposed 
approach uses a unique indexing scheme for discovery. It 
uses two indices, namely, output index and input index for 
output and input parameters of services respectively. In 
either index, each key is mapped to its eight different types 
of semantically related service categories. For each key, its 
service categories are computed using a semantic reasoner 
prior to querying itself. The keys and their service 

categories are archived. An in-memory indexing of  
pre-computed values is implemented using hash data 
structures to enhance the performance of discovery as well 
as to achieve constant time complexity. Maintenance of two 
indices eliminates semantic reasoning entirely during 
querying. Also, a service client is allowed to specify the 
RDoM in terms of the above categories and during querying 
matched services of a query are retrieved from the indices 
according to the given RDoM. 

QoS-based selection is handled by two major methods, 
namely, global planning and local selection. In global 
planning, at first a composite service is formed by 
combining one service from each service class. Then the 
QoS attributes of composite service are computed and 
checked against user’s QoS requirements. To reduce the 
exponential time complexity of global approach, local 
selection approaches such as Mohammad and Thomas 
(2009), Li et al. (2010), Jin et al. (2010) and Sun et al. 
(2010) are being used. Local selection methods treat the 
selection of service combination for a given workflow as a 
main problem and divide the main problem into n sub 
problems where n indicates the number of tasks in the 
workflow. The sub problems are constructed by 
decomposing the given user’s QoS constraints called global 
constraints (workflow level) into task level constraints 
called local constraints and assigning the local constraints to 
individual tasks. 

The method of decomposing constraints presented in 
Mohammad and Thomas (2009) is extensively used by other 
approaches such as Li et al. (2010), Jin et al. (2010) and Sun 
et al. (2010). Though Mohammad and Thomas (2009) 
describes an efficient way of decomposing constraints, it 
uses mixed integer programming (MIP) to identify local 
constraints. Hence, it suffers from poor time characteristics 
when number of services grows. Also, the computation time 
of this method is influenced by number of constraints. 
Further, this method assigns a particular level of a QoS 
attribute which is more frequent in a service class as local 
constraint of that service class. In such situation, there may 
be other service which may not be most frequent but has the 
maximum utility for a user. But such service which is 
capable of yielding the maximum utility is ignored by the 
method. But we propose a new method for decomposing 
QoS constraints based on extreme values (minimum and 
maximum) of QoS attributes of service classes. As the 
method of assigning constraints is based on extreme values, 
it is not affected by individual services present in service 
classes. 

After construction, each sub problem is solved to select 
a suitable service from its service class subject to its local 
constraints. Here, the suitable service is identified based on 
the utility function which captures user’s QoS preferences 
over different attributes. There are many approaches such as 
Zeng et al. (2003, 2004) and Hong and Hu (2009) which 
formulate the sub problem as a linear programming (LP) 
problem and find the optimal values for utility and QoS 
attributes (decision variables). Though solving sub problems 
using LP techniques helps in computing optimal values of 
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utility and QoS attributes, the method does not help in 
identifying the service having the optimal values whereas 
identification (of service) is must for service composition. 
Hence, in the proposed approach, the service with maximum 
utility is determined using standard searching technique. 
Further, in the proposed approach, indexing of QoS values 
by service ID is used to speed up the searching. 

3 Proposed approach 

A new approach in two stages, namely, functional  
discovery and non-functional selection is proposed for 
identifying best services for composition with its main  
focus on computational optimisation of functional discovery 
and non-functional selection. The computation time of 
functional discovery is reduced by pre-computing various 
semantic relations among inputs and outputs of all services 
and maintaining the pre-computed semantic relations in two 
indices, namely, output index and input index. The 
computation time of non-functional selection is reduced by 
using local selection in multithreaded fashion with a new 
method of decomposing QoS constraints. 

3.1 Functional discovery 

The functional discovery is split into two tasks, namely, 
index creation and service retrieval. Index creation is 
performed prior to querying. During querying service 
retrieval is performed using the indices. 

3.1.1 Index creation 

In the proposed approach two indices, namely, output index 
and input index are used to optimise the performance of 
discovery. Output and input parameters of services are used 
as the keys of output index and input index respectively. In 
either index, each key is mapped to its semantically related 
service categories (values of the key). To realise the 
disparate similarity demands of clients, for each key,  
its value is categorised into eight different semantically  
related service categories, namely, equal, direct-plugin, 
indirect-plugin, direct-subsumes, indirect-subsumes, sibling, 
partial-parent and grandparent. The service categories for 
both indices are similar. The service categories with respect 
to output index are described below. 

1 Equivalent: This category refers to the set of all 
services having at least one output whose type is 
exactly equivalent to the type of the key. 

2 Direct-plugin: This category refers to the set of all 
services having at least one output whose type is direct 
super class (i.e., immediate super class) to the type of 
the key. 

3 Indirect-plugin: This category refers to the set of all 
services having at least one output whose type is 
indirect super class (i.e., deeper super class) to the type 
of the key. 

4 Direct-subsumes: This category refers to the set of all 
services having at least one output whose type is direct 
sub class (i.e., immediate sub class) to the type of the 
key. 

5 Indirect-subsumes: This category refers to the set of all 
services having at least one output whose type is 
indirect sub class (i.e., deeper sub class) to the type of 
the key. 

6 Sibling: This category refers to the set of all services 
having at least one output whose all parents’ types are 
same as all parents’ types of the key. 

7 Partial-parent: This category refers to the set of all 
services having at least one output whose at least one 
parent’s type is same as at least one parent’s type of the 
key. 

8 Grandparent: This category refers to the set of all 
services related to the type of the key in one of the 
following ways. 
• services having at least one output whose at least 

one grandparent’s type is same as at least one 
grandparent’s type of the key 

• services having at least one output whose at least 
one parent’s type is same as at least one 
grandparent’s type of the key 

• services having at least one output whose at least 
one grandparent’s type is same as at least one 
parent’s type of the key. 

Towards the creation of indices, for each key its 
semantically related service categories with respect to all 
available services (present in a service repository) are  
pre-computed with the help of an ontology reasoner. The 
input and output service indices are constructed using the 
pre-computed semantically related service categories as 
discussed below. 

Let s1, s2, …, sm be the available services in a repository. 
Let si denote an ith service. Let out(si) denote the set  
of all outputs of si. Let in(si) denote the set of all inputs  
of si. Let two sets, namely, Input_index_keyset and 
Output_index_keyset denote all the keys of input index and 
output index respectively. The keys of input and output 
indices are defined as follows. 

( )
1

_ _
m

i
i

Input index keyset in s
=

=∪  (1) 

( )
1

_ _
m

i
i

Output index keyset out s
=

=∪  (2) 

For each key of the input index, i.e., for each  
x ∈ Input_index_keyset, its various semantically  
related service categories, namely, equal, direct-plugin, 
indirect-plugin, direct-subsumes, indirect-subsumes,  
sibling, partial-parent and grandparent are denoted by 
dom_in(1, x), dom_in(2, x), dom_in(3, x), dom_in(4, x), 
dom_in(5, x), dom_in(6, x), dom_in(7, x) and dom_in(8, x) 
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respectively. Each key is mapped to its service categories 
and the structure of the input index is given in Figure 3. In 
Figure 3, the left side denotes the keys of the input  
index (i.e., x) and the right side denotes the values of  
the keys (i.e., values of x). From Figure 3, one can 
understand how each key of the input index (i.e., each  
x ∈ Input_index_keyset) is mapped to its semantically 
related service categories. 

Similarly, for each key of the output index,  
x ∈ Output_index_keyset, its various semantically  
related service categories, namely, equal, direct-plugin, 
indirect-plugin, direct-subsumes, indirect-subsumes,  
sibling, partial-parent and grandparent are denoted by 
dom_out(1, x), dom_out(2, x), dom_out(3, x), dom_out(4, x), 
dom_out(5, x), dom_out(6, x), dom_out(7, x) and 
dom_out(8, x) respectively. Each key of the output index is 
mapped to its semantically related service categories and the 
structure of the output index is given in Figure 4.  
In Figure 4, the left side denotes the keys of the output 
index (i.e., x) and the right side denotes the values of keys 
of output index (i.e., values of x). From Figure 4 one  
can understand how each key of the output index (i.e., each 
x ∈ Output_index_keyset) is mapped to its semantically 
related service categories. 

To show how a particular key entry will exist in an 
index, consider a key, x ∈ Input_index_keyset. Let x be 
‘http://localhost/ontology/concept.owl#_recommended_pric
e’. The entry of x and its mapped values in the input index is 
given in Figure 5. For each semantic service category, 
typical values are given in Figure 5. For example, from 

Figure 5, the equivalent service category for x is found to be 
{s23, s24, s25}. 

3.1.2 Service retrieval 

Let t be a task for which matched services have to be 
retrieved using the indices. Let Input(t) denote the set of all 
inputs of t. Let Output(t) denote the set of all outputs of t. 
For each input x ∈ Input(t), its semantically related service 
categories, namely, dom_in(1, x), dom_in(2, x), dom_in(3, 
x), dom_in(4, x), dom_in(5, x), dom_in(6, x), dom_in(7, x) 
and dom_in(8, x) are extracted from the input index. 
Similarly for each output x ∈ Output(t), its semantically 
related service categories, namely, dom_out(1, x), 
dom_out(2, x), dom_out(3, x), dom_out(4, x), dom_out(5, x), 
dom_out(6, x), dom_out(7, x) and dom_out(8, x) are 
extracted from the output index. 

At first, the equivalent matched service category of the 
given task denoted by equal(t) is computed by taking the 
intersection of the corresponding service categories of 
inputs and outputs of the task. Then, based on the results of 
intersection, we successively define modified service 
categories for inputs and outputs of the task and ultimately 
we define further matched service categories of t, namely, 
direct_plugin(t), indirect_plugin(t), direct_subsumes(t), 
indirect_subsumes(t), sibling(t), partial-parent(t) and 
grandparent(t). 

Figure 3 Structure of input index 

 

Figure 4 Structure of output index 
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Figure 5 Example of a particular key x and its service categories in input index 

 

 
For each i, 1 ≤ i ≤ 8, and for each x ∈ Input(t), we define 
successively m_dom_in(i, x) and for each i, 1 ≤ i ≤ 8, and 
for each y ∈ Output(t), we define successively 
m_dom_out(i, y) as described below. 

Case 1: i = 1 

_ _ (1, ) _ (1, ),     ( )m dom in x dom in x x Input t= ∀ ∈  (3) 

_ _ (1, ) _ (1, ),     ( )m dom out y dom out y y Output t= ∀ ∈  (4) 

Case 2: i ≥ 2 

Sub Case 2a: 
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_ _ ( 1, )

x Input t

y Output t

m dom in i x

m dom out i y φ

∈

∈
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⎝ ⎠
∩

∩

∩
 

_ _ ( , ) _ ( , ),
( )

m dom in i x dom in i x
x Input t

=
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 (5) 

_ _ ( , ) _ ( , ),
( )

m dom out i y dom out i y
y Output t

=
∀ ∈

 (6) 

Sub Case 2b: 

( )

( )

_ _ ( 1, )

_ _ ( 1, )

x Input t

y Output t

m dom in i x

m dom out i y φ

∈

∈

⎛ ⎞−
⎜ ⎟
⎝ ⎠
⎛ ⎞− =⎜ ⎟
⎝ ⎠
∩

∩

∩
 

_ _ ( , )
_ ( , ) _ _ ( 1, ),   ( )

m dom in i x
dom in i x m dom in i x x Input t= − ∀ ∈∪

 (7) 
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_ _ ( , )
_ ( , ) _ _ ( 1, ),

    ( )

m dom out i y
dom out i y m dom out i y

y Output t
= −
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∪  (8) 

Now we define various matched service categories for the 
given task as follows. 
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⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

∩

∩

∩
 (12) 

( )

( )

_ ( )

_ _ (5, )

_ _ (5, )    

x Input t

y Output t

indirect subsumes t

m dom in x

m dom out y

∈

∈

⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

∩

∩

∩
 (13) 

( )

( )

( )

_ _ (6, )

_ _ (6, )    

x Input t

y Output t

sibling t

m dom in x

m dom out y

∈

∈

⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

∩

∩

∩
 (14) 

( )

( )

- ( )

_ _ (7, )

_ _ (7, )    

x Input t

y Output t

partial parent t

m dom in x

m dom out y

∈

∈

⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

∩

∩

∩
 (15) 

( )

( )

( )

_ _ (8, )

_ _ (8, )    

x Input t

y Output t

grandparent t

m dom in x

m dom out y

∈

∈

⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

∩

∩

∩
 (16) 

We define one more matched service category called 
partial(t) based on the value of grandparent(t). 

Let 

( )

_ _ (8, )
x Input t

m dom in xA
∈

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∩  

Let 

( )

_ _ (8, )
y Output t

m dom out yB
∈

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∩  

If grandparent(t) φ, we define partial(t) as follows 

Case 1: A = φ; B = φ 

( )partial t φ=  (17) 

Case 2: A = φ; B ≠ φ 

( )partial t B=  (18) 

Case 3: A ≠ φ; B = φ 

( )partial t A=  (19) 

Case 4: A ≠ φ; B ≠ φ 

( )partial t A B= ∪  (20) 

The process of retrieving services is illustrated using a task t 
having two inputs denoted by Input(t) = {x1, x2} and one 
output denoted by Output(t) = {y1}. The inputs x1 and x2 of t 
will be matched with each key of the input index. Similarly, 
the output y1 of t will be matched with each key of the 
output index. The values or (i.e., service categories) mapped 
by the matched keys of x1 and x2 are extracted from the 
input index and given in Table 1. Similarly, the values 
mapped by the matched key of y1 are extracted from the 
output index and given in Table 2. Further, note that the 
data given in Tables 1 and 2 are typical values assumed to 
explain the method of service retrieval. 

Table 1 Service categories extracted for x1 and x2 from the input index 

xi dom_in(1, xi) dom_in(2, xi) dom_in(3, xi) dom_in(4, xi) dom_in(5, xi) dom_in(6, xi) dom_in(7, xi) dom_in(8, xi) 

x1 {s6, s7} {s3} {s11, s12} φ {s14} {s13} {s17} {s19} 

x2 {s8} {s7} {s11} {s14} {s7} {s13, s17} φ {s19, s23} 
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Table 2 Service categories extracted for y1 from the output index 

yi dom_out(1, yi) dom_out(2, yi) dom_out(3, yi) dom_out(4, yi) dom_out(5, yi) dom_out(6, yi) dom_out(7, yi) dom_out(8, yi)

y1 {s6, s7} {s3} {s11, s13} φ {s14} φ {s17} φ 

 
From Table 1, the service categories, namely,  
equal, direct-plugin, indirect-plugin, direct-subsumes, 
indirect-subsumes, sibling, partial-parent and grandparent 
mapped by the matched key of x1, denoted by dom_in(1, x1), 
dom_in(2, x1), dom_in(3, x1), dom_in(4, x1), dom_in(5, x1), 
dom_in(6, x1), dom_in(7, x1) and dom_in(8, x1) are  
retrieved as 

( ) { }
( ) { }
( ) { }
( )
( ) { }
( ) { }
( ) { }
( ) { }

1 6 7

1 3

1 11 12

1

1 14

1 13

1 17

1 19

_ 1,  = ,

 _ 2,  =

 _ 3,  = ,

 _ 4,  =  

_ 5,  =

_ 6,  =

_ 7,  =

_ 8,  =  

dom in x s s

dom in x s

dom in x s s

dom in x

dom in x s

dom in x s

dom in x s

dom in x s

φ
 (21) 

Further, from Table 1, the service categories, namely,  
equal, direct-plugin, indirect-plugin, direct-subsumes, 
indirect-subsumes, sibling, partial-parent and grandparent 
mapped by the matched key of x2, denoted by dom_in(1, x2), 
dom_in(2, x2), dom_in(3, x2), dom_in(4, x2), dom_in(5, x2), 
dom_in(6, x2), dom_in(7, x2) and dom_in(8, x2) are  
retrieved as 

( ) { }
( ) { }
( ) { }
( ) { }
( ) { }
( ) { }
( )
( ) { }

2 8

2 7

2 11

2 14

2 7

2 13 17

2

2 19 23

_ 1,  =

 _ 2,  =

 _ 3,  =

 _ 4,  =

_ 5,  =

_ 6,  = ,

_ 7,  =

_ 8,  = ,  

dom in x s

dom in x s

dom in x s

dom in x s

dom in x s

dom in x s s

dom in x

dom in x s s

φ

 (22) 

Similarly, from Table 2, the service categories, namely, 
equal, direct-plugin, indirect-plugin, direct-subsumes, 
indirect-subsumes, sibling, partial-parent and grandparent 
mapped by the matched key of y1, denoted by dom_out(1, 
y1), dom_out(2, y1), dom_out(3, y1), dom_out(4, y1), 
dom_out(5, y1), dom_out(6, y1), dom_out(7, y1) and 
dom_out(8, y1) are retrieved as 

( ) { }
( ) { }
( ) { }
( )
( ) { }
( )
( ) { }
( )

1 6 7

1 3

1 11 13

1

1 14

1

1 17

1

_ 1,  = ,

 _ 2, =

 _ 3,  = ,

 _ 4,  =  

_ 5,  =

_ 6,  =

_ 7,  =

_ 8,  =

dom out y s s

dom out y s

dom out y s s

dom out y

dom out y s

dom out y

dom out y s

dom out y

φ

φ

φ

 (23) 

Now how successively various levels of matched services 
are found out using the proposed method of service retrieval 
is given below. At first, the first level modified service 
categories of x1, x2 and y1, namely, m_dom_in(1, x1), 
m_dom_in(1, x2) and m_dom_out(1, y1) are computed using 
(3) and (4) as Case 1 is satisfied. 

( ) { }
( ) { }
( ) { }

1 6 7

2 8

1 6 7

_ _ 1, = ,

_ _ 1,  

_ _ 1, = ,

m dom in x s s

m dom in x s

m dom out y s s

=  

Now, based on the result of intersection taken on the first 
level modified service categories of x1, x2 and y1 the second 
level modified service categories of x1, x2 and y1, namely, 
m_dom_in(2, x1), m_dom_in(2, x2) and m_dom_out(2, y1) 
are computed either using Sub Case 2a or Sub Case 2b. 

In this example, the values of m_dom_in(2, x1), 
m_dom_in(2, x2) and m_dom_out(2, y1) are computed  
using (7) and (8) as Sub Case 2b is satisfied. 

( )
( ) ( )

{ }
( )

( ) ( )
{ }

( )
( ) ( )

{ }

1

1 1

3 6 7

2

2 2

8 7

1

1 1

6 7 3

_ _ 2,

_ _ _2, 1,

, ,

_ _ 2,

_ _ _2, 1,

,

_ _ 2,

_ _ _2, 1,

, ,

m dom in x

dom in m dom inx x

s s s

m dom in x

dom in m dom inx x

s s

m dom out y

dom out m dom outy y

s s s

=

=

=

=

=

=

∪

∪

∪
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The third level modified service categories of x1, x2  
and y1, namely, m_dom_in(3, x1), m_dom_in(3, x2) and 
m_dom_out(3, y1) are computed using (5) and (6) as  
Sub Case 2a is satisfied. 

( ) ( ) { }
( ) ( ) { }
( ) ( ) { }

1 1 11 12

2 2 11

11 131 1

_ _ _3, 3, ,

_ _ _3, 3,

_ _ _ ,3, 3,

m dom in dom inx x s s

m dom in dom inx x s

m dom out dom out s sy y

= =

= =

= =

 

The fourth level modified service categories of x1, x2  
and y1, namely, m_dom_in(4, x1), m_dom_in(4, x2) and 
m_dom_out(4, y1) are computed using (5) and (6) as  
Sub Case 2a is satisfied. 

( ) ( )
( ) ( ) { }
( ) ( )

1 1

2 2 14

1 1

_ _ _4, 4,

_ _ _4, 4,

_ _ _4, 4,

m dom in dom inx x

m dom in dom inx x s

m dom out dom outy y

φ

φ

= =

= =

= =

 

The fifth level modified service categories of x1, x2  
and y1, namely, m_dom_in(5, x1), m_dom_in(5, x2) and 
m_dom_out(5, y1) are computed using (7) and (8) as  
Sub Case 2b is satisfied. 

( )
( ) ( )

{ }
( ) ( ) ( )

{ }
( )

( ) ( )
{ }

1

1 1

14

2 2 2

14 7

1

1 1

14

_ _ 5,

_ _ _5, 4,

_ _ _ _ _5, 5, 4,

,

_ _ 5,

_ _ _5, 4,

m dom in x

dom in m dom inx x

s

m dom in dom in m dom inx x x

s s

m dom out y

dom out m dom outy y

s

=

=

=

=

=

=

∪

∪

∪

 

The sixth level modified service categories of x1, x2  
and y1, namely, m_dom_in(6, x1), m_dom_in(6, x2) and 
m_dom_out(6, y1) are computed using (5) and (6) as Sub 
Case 2a is satisfied. 

( ) ( ) { }
( ) ( ) { }
( ) ( )

131 1

13 172 2

1 1

_ _ _6, 6,

_ _ _ ,6, 6,

_ _ _6, 6,

m dom in dom in sx x

m dom in dom in s sx x

m dom out dom outy y φ

= =

= =

= =

 

The seventh level modified service categories of x1, x2  
and y1, namely, m_dom_in(7, x1), m_dom_in(7, x2) and 
m_dom_out(7, y1) are computed using (7) and (8) as  
Sub Case 2b is satisfied. 

( )
( ) ( )

{ }
( ) ( ) ( )

{ }
( )

( ) ( )
{ }

1

1 1

13 17

2 2 2

13 17

1

1 1

17

_ _ 7,

_ _ _7, 6,

,

_ _ _ _ _7, 7, 6,

,

_ _ 7,

_ _ _7, 6,

m dom in x

dom in m dom inx x

s s

m dom in dom in m dom inx x x

s s

m dom out y

dom out m dom outy y

s

=

=

=

=

=

=

∪

∪

∪

 

The eighth level modified service categories of x1, x2  
and y1, namely, m_dom_in(8, x1), m_dom_in(8, x2) and 
m_dom_out(8, y1) are computed using (5) and (6) as  
Sub Case 2a is satisfied. 

( ) ( ) { }
( ) ( ) { }
( ) ( )

191 1

19 232 2

1 1

_ _ _8, 8,

_ _ _ ,8, 8,

_ _ _8, 8,

m dom in dom in sx x

m dom in dom in s sx x

m dom out dom outy y φ

= =

= =

= =

 

Now, various matched service categories of t,  
namely, equal(t), direct_plugin(t), indirect_plugin(t), 
direct_subsumes(t), indirect_subsumes(t), sibling(t),  
partial-parent(t) and grandparent(t) are computed using (9) 
to (16) as follows. 

( ) =equal t φ  

{ }7_ ( )direct plugin t s=  

{ }11_ ( )indirect plugin t s=  

_ ( )direct subsumes t φ=  

{ }14_ ( )indirect subsumes t s=  

( )sibling t φ=  

{ }17- ( )partial parent t s=  

( )grandparent t φ=  

As grandparent(t) = φ, we define partial(t) using (19)  
(as Case 3 is satisfied). 

{ }19( )partial t s=  

Thus, service retrieval results in nine different kinds of 
matched service categories for a given task. Further, RDoM 
can take the values, equal, direct_plugin, indirect_plugin, 
direct_subsumes, indirect_subsumes, sibling, partial-parent 
and grandparent (here partial or none can also be included). 
Based on the strictness of similarity requirements of 
applications, the value of RDoM is specified and 
accordingly matched results up to the given RDoM are 
returned. For example, if RDoM is direct_subsumes,  
then matched results up to direct_subsumes (including 
direct_subsumes) are returned. 

3.2 Non-functional selection 

For each task in the workflow, its respective service class is 
discovered using functional discovery. In non-functional 
selection, the best service for each task is selected from its 
respective service class based on non-functional attributes 
of services. As mentioned earlier, to reduce the time 
complexity of global planning methods, it is proposed to 
optimise the non-functional stage using local selection 
method. Local selection method divides the problem of 
selecting best service combination for a given workflow  
into n sub problems where n denotes the number of tasks 
present in the workflow. Besides QoS constraints, service 
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consumers may also specify their preferences over different 
QoS attributes as in the query: find a travel plan service to 
plan Malaysian Package trip such that the cost of service is 
<=$500 and response time is <10 seconds with 80% 
preference to response time and 20% preference to cost. 
The user-defined preferences are captured in the form of a 
utility function which is used to select the best service of a 
task. 

The non-functional selection is carried out in two steps, 
namely, decomposition of constraints and service selection. 
In decomposition of constraints, the sub problems are 
constructed by decomposing the given global QoS 
constraints into local constraints and assigning the local 
constraints to individual tasks. In service selection, each sub 
problem is resolved to find a service of maximum utility as 
the best service for a particular task from its respective 
service class subject to its local constraints. 

3.2.1 Decomposition of constraints 

In decomposition of constraints each given global constraint 
is decomposed into local constraints and the local 
constraints are assigned to the tasks present in the workflow. 
The proposed method of decomposing global constraints 
into local constraints is based on the extreme (minimum and 
maximum) values of QoS attributes of the service classes 
and the global constraints. 

The method of decomposing constraints is  
explained using sequential workflows and it can be 
employed to any combinational workflow after the 
conversion of combinational workflow into sequential 
workflow. To show the implementation of the proposed 
method of decomposition to combinational workflows,  
a typical case, namely, decomposing constraints to a 
combinational workflow having parallel units is presented 
at the end of this sub section. As negative attributes 
(negative attributes are attributes whose values should be 
minimised) such as response time and cost gain much 
significance in service-based applications, the process of 
decomposition is described using any kth negative attribute 
denoted by qk and its global constraint denoted by Gk. 

A service class contains many functionally similar 
services with varying QoS attributes. So, the value of a QoS 
attribute of a service class ranges from a minimum to a 
maximum. Let Qmax(j, k) denote the maximum value of qk of 
jth service class. Let Qmin(j, k) denote the minimum value of 
qk of jth service class. Now the QoS attributes of workflow 
are computed based on the QoS attributes of service classes. 
Let max ( )Q k′  and min ( )Q k′  represent the maximum and 
minimum value of qk of the given workflow respectively. 
The values of max ( )Q k′  and min ( )Q k′  are computed using 

max max
1

( ) ( , )
n

j

Q k Q j k
=

′ =∑  (24) 

min min
1

( ) ( , )
n

j

Q k Q j k
=

′ =∑  (25) 

For a given global constraint, the local constraints are 
computed in an iterative manner. The iteration starts with 
initial values assigned to local constraints and it continues 
till the sum of local constraints is within 90% to 100 % of 
the global constraint (i.e., the given global constraint is 
utilised to its 90% to 100%). The iteration process is given 
below. 

Let constraint(j, k) denote the local constraint of qk of jth 
service class. 

The initial values of constraints of qk for all service 
classes are computed using 

min max

( ,  )
( , ) ( , )

,   1
2

constraint j k
Q j k Q j k

j n
+

= ≤ ≤
 (26) 

After computing the initial values of constraints, the values 
are summed and the sum is compared against the condition, 

1

0.9 ( ,  ) .
n

k k
j

G constraint j k G
=

≤ ≤∑  The comparison results 

in three cases. 

Case 1: 
1

( ,  ) 0.9
n

k
j

constraint j k G
=

<∑  

In this case, for each jth service class, the value  
constraint(j, k) is increased by 10% of its current value. 
Then, the newly computed constraint values are summed 
and the sum is checked against the condition, 

1

0.9 ( ,  ) .
n

k k
j

G constraint j k G
=

≤ ≤∑  This process is repeated 

until 
1

( ,  )
n

j

constraint j k
=
∑  satisfies the above condition. 

Case 2: 
1

( ,  )
n

k
j

constraint j k G
=

>∑  

In this case, for each jth service class, the value  
constraint(j, k) is decreased by 10% of its current value. 
Then, the newly computed constraint values are summed 
and the sum is checked against the condition, 

1

0.9 ( ,  ) .
n

k k
j

G constraint j k G
=

≤ ≤∑  This process is repeated 

until 
1

( ,  )
n

j

constraint j k
=
∑  satisfies the above condition. 

Case 3: 
1

0.9 ( ,  )
n

k k
j

G constraint j k G
=

≤ ≤∑  

In this case, the initial values of constraints satisfy the 

condition, 
1

0.9 ( ,  )
n

k k
j

G constraint j k G
=

≤ ≤∑  and there is no 

further change in the values of constraints. 
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The pseudo code describing the above cases is given 
below. 

If 
1

( ( ,  ) 0.9 )
n

k
j

constraint j k G
=

<∑  

{ 
 

while 
1

( ( ,  ) 0.9 )
n

k
j

constraint j k G
=

<∑  

 { 
  for (j = 1; j ≤ n; j = j + 1) 
  //add 10% of constraint(j, k) to constraint(j, k) 
  constraint(j, k) = constraint(j, k) + 0.1 × constraint(j, k) 
 } 
} 

Elseif 
1

( ( ,  ) )
n

k
j

constraint j k G
=

>∑  

{ 
 

while 
1

( ( ,  ) )
n

k
j

constraint j k G
=

>∑  

 { 
  for (j = 1; j ≤ n; j = j + 1) 
  //deduct 10% of constraint(j, k) from constraint(j, k) 
  constraint(j, k) = constraint(j, k) – 0.1 × constraint(j, k) 
 } 
} 
else 
{//no change in the initial values of the constraints} 

At last one can verify that the condition 

1

0.9 ( ,  )
n

k k
j

G constraint j k G
=

≤ ≤∑  is satisfied. 

Thus the given global constraint of qk is decomposed 
into local constraints and the local constraints are assigned 
to all service classes present in the workflow. 

Further, as mentioned earlier, how the proposed method 
of decomposing constraints is implemented to a 
combinational workflow having parallel units is described 
as a typical case. 

3.2.1.1 Typical case: decomposing constraints to a 
combinational workflow having parallel units 

Consider a typical combinational workflow denoted by W 
having parallel units (or AND units) as given in Figure 6. A 

parallel unit basically consists of more than one path of 
tasks and all paths will be executed simultaneously. As in 
Figure 6, W contains x number of sequential tasks, denoted 
by t1, t2, t3, ..., tx and y number of parallel units denoted by 
u1, u2, u3, ..., uy. Further, in Figure 6, ‘AS’ denotes AND 
split and ‘AJ’ denotes AND join. The decomposition of 
constraints to all tasks of the given workflow is performed 
using three steps, namely, conversion of combinational 
workflow into its equivalent sequential workflow, 
decomposition of constraints to the converted sequential 
workflow and derivation of constraints to all tasks of the 
given combinational workflow. 

Step 1: Conversion of combinational workflow into its 
equivalent sequential workflow 

The given workflow is converted into its equivalent 
sequential workflow by converting each parallel unit into its 
equivalent sequential task. The conversion of a parallel unit 
into its sequential task is based on the method of computing 
QoS attributes for parallel unit. 

Consider a typical parallel unit, u as given in Figure 7. 
Let l denote the number of paths in u. Let mi, 1 ≤ i ≤ l be the 
number of tasks in the ith path. Let ‘pi’ denote the ith path in 
u. Let tij denote the jth task of pi. Let denote qk denote kth 
negative attribute. Let min_qk(pi) and max_qk(pi) denote the 
minimum and maximum value of qk of pi. Let min_qk(tij) 
and max_qk(tij) denote the minimum and maximum values 
of qk of tij. 

The values of min_qk(pi) and max_qk(pi) are calculated 
using 

( ) ( )
1

min _ min _ ,   1,2, ,
im

ijk i k
j

tq p q i l
=

= =∑ …  (27) 

( ) ( )
1

max _ max _ ,   1,2, ,
im

ijk i k
j

tq p q i l
=

= =∑ …  (28) 

Let min_qk(u) and max_qk(u) denote the minimum and 
maximum value of qk of u. The values of min_qk(u) and 
max_qk(u) are computed using 

( ){ }min _ ( ) max 1min _k k iq u i lq p= ≤ ≤  (29) 

( ){ }max _ ( ) max 1max _k k iq u i lq p= ≤ ≤  (30) 
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Figure 6 Typical combinational workflow having parallel units (W) 

 

Figure 7 Typical parallel unit (u) 

 

Figure 8 Converted sequential workflow (W′) 

 

 
Now, the parallel unit u is replaced by its equivalent 
sequential task called converted-task whose minimum and 
maximum values of qk are equal to min_qk(u) and max_qk(u) 
respectively given by (29) and (30). 

Step 2: Decomposition of constraints to the converted 
sequential workflow 

The previous step results in a sequential workflow, denoted 
by W′ which is equivalent to the given combinational 
workflow. As shown in Figure 8, W′ contains a set of 
original sequential tasks present in the given workflow and 
a set of converted-tasks. Let t1, t2, t3, ..., tx denote the 
original sequential tasks and 1 2 3,  ,  ,  ...,  yt t t t′ ′ ′ ′  denote the 
converted-tasks in W′. In this step, the given global 
constraint of qk, denoted by Gk is decomposed into local 

constraints and assigned to tasks and converted-tasks 
present in W′ using the proposed method of decomposition. 

Step 3: Derivation of constraints to all tasks of the given 
combinational workflow 

Each converted-task is associated with its respective parallel 
unit. Let us consider a converted-task t′ in W′. Let u denote 
the parallel unit associated with t′. Let constraint_qk(t′) 
denote the constraint of qk of t′. Let constraint_qk(u) denote 
the constraint of qk of u. As u is equivalent to t′, one can 
write 

_ ( ) _ ( )k kconstraint q u constraint q t′=  (31) 

Now from the constraint_qk(u), the constraints of paths 
present in the unit are computed. As all the paths of tasks 
present in a parallel unit are executed in parallel, the 
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constraint of qk of each ith path, is same as constraint_qk(u). 
Let constraint_qk(pi) denote the constraint of qk of pi which 
is computed as 

( )_ _ ( ),   1,2, ,k i kconstraint q p constraint q u i l= = …  

Now, the constraints of qk of all tasks present in pi are 
computed from constraint_qk(pi) using the proposed method 
of decomposition. 

Thus, the proposed method of decomposition can be 
implemented to combinational workflows having parallel 
units. 

3.2.2 Service selection 

After assigning local constraints to individual tasks of the 
workflow, each sub problem is formulated to select a 
service of maximum utility as the best service for a 
particular task from its respective service class subject to its 
local constraints. In our work, it is proposed to adopt the 
method presented in Mohammad and Thomas (2009) for the 
computation of utility. In this method, preferences of users 
over different QoS attributes are captured as a utility 
function using simple additive weighting (SAW) technique 
(Paul and Ching-Lai, 1995). The method computes the 
utility of say an ith service of jth service class which satisfies 
the local constraints of its service class (i.e., jth service class) 
using 

( ) ( )max

max min1

( , )
( ) ( )

r
jik

ji k
k

sQ j k q
sU w

Q k Q k=

−
= ×

′ ′−∑  (32) 

In (32), max ( )Q k′  represents the maximum value of qk of the 
given workflow (the value of max ( )Q k′  is computed as sum 
of maximum values of qk of all service classes) and min ( )Q k′  
represents the minimum value of qk of the given workflow 
(the value of min ( )Q k′  is computed as the sum of minimum 
values of qk of all service classes). Further, in (32), Qmax(j, 
k) represents the maximum value of qk of jth service class, 
qk(sji) represents the value of qk of ith service of jth service 
class and wk represents the weight of qk. The utility function 

is subject to the condition, 
1

1
r

k
k

w
=

=∑  where r denote the 

number of negative attributes. 
The utility of each service of a service class which 

satisfies the local constraints of that service class is 
computed using (32). For each task, the service which 
produces the maximum utility is found out as the best 
service from the utility values of all services of that service 
class using searching technique. Further, indexing of QoS 
values based on service ID is used to speed up the searching 
while finding the best service. 

4 Experimentation 

4.1 Implementation setup 

The proposed approach is implemented as in Figure 9. The 
two stages of the proposed approach are shown as two 
major parts (functional discovery and non-functional 
selection) in Figure 9. In functional discovery, prior to 
querying (i.e., prior to the arrival of query/workflow), 
semantic relations among input and output parameters of all 
services in the service repository are computed using Jena 
API and Pellet reasoner. Semantic relations among the 
input parameters of all services are computed as input 
service category and the semantic relations among the 
output parameters of services are computed as output 
service category. The input and output service categories 
are archived in Excel files. At the start up of concerned 
composition-based application itself, two hash-based 
indices, namely, output index and input index are created 
using the pre-computed output and input service categories. 
The output and input parameters of services are used as keys 
of output index and input index respectively. During 
querying, the input workflow for which discovery has to be 
done is given as input to service retrieval module. This 
module interacts with the indices and retrieves a set of 
service classes. 

The service classes obtained in functional discovery are 
given as inputs to decomposition module of non-functional 
selection along with the global constraints of users. While 
decomposing constraints, the extreme values of QoS 
attributes of different service classes are retrieved from QoS 
repository and retrieval of QoS is an external process to 
service selection. As the selection of best service of each 
task is independent, the selection of best services for all 
tasks of the workflow is executed simultaneously using 
multiple threads by the selection module. Ultimately the 
best services selected for all tasks are combined and 
returned as the best service combination for the given 
workflow. 

4.2 Objectives and test collection 

There are five objectives of experimentation. The first one is 
to find the time taken by the proposed method for functional 
discovery and compare it with conventional approaches. 
The second one is to find the time taken by the proposed 
method for non-functional selection and compare it with 
conventional approaches. The third objective is a special 
case which tests the computation time taken for 
decomposing constraints to combinational workflows 
having parallel units. The fourth one is to test the quality of 
results produced in functional discovery and non-functional 
selection of the proposed approach against the standards. 
The fifth objective is to compare the results obtained using 
proposed approach with existing similar approaches. 
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Figure 9 Implementation setup of the proposed method 

 

 
Two test collections, namely, Test_Collection_1 and 
Test_Collection_2 are constructed to conduct experiments 
related to functional discovery. Test_Collection_1 is 
constructed using 800 services collected from the publicly 
available OWL-S service retrieval test collection  
Version-3(OWLS-TC3). Using Test_Collection_1 as base, 
Test_Collection_2 containing 10,000 services is 
constructed. The above test collections contain services 
from 7 different domains, namely, education, medical care, 
food, travel, communication, economy and weapons. 
Semantic relations among input and output parameters are 
pre-computed and service categories are archived. 

To conduct experiments for selection stage, QoS dataset 
from http://www.uoguelph.ca/~qmahmoud/qws/index.html/ 
is used. This dataset contains nine QoS attributes of 2,500 
real web services. The QoS attributes include response time, 
availability, throughput, likelihood of success, reliability, 
compliance, best practices, latency and documentation. 
Using this dataset as base, QoS data have been created for a 

collection of 10,000 services. The QoS data are archived in 
Excel. 

Experiments are performed on a laptop with Intel 
Pentium(R) Dual-Core, 2.20 GHz CPU, 3.0 GB memory 
and Windows 7 Ultimate Operating System. The proposed 
approach is implemented using J2EE environment. 

4.3 Results and discussions 

4.3.1 Computation time of functional discovery 

The computation time of functional discovery of the 
proposed method (hash index-based) is analysed by varying 
the number of services. To study the influence of indexing 
in computation time, the computation time of functional 
discovery of the proposed method is compared with two 
other methods, namely, sequential method and sequential 
method with pre-computed semantic relations. Three 
experiments are conducted to study the computation time of 
functional discovery using the above methods. 
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In an experiment computation time of functional 
discovery is analysed using sequential method by varying 
the number of services. To find matched services of a given 
task, the inputs and outputs of the task is matched with that 
of each available service in the service repository. During 
matching the semantic relations among the concepts of the 
task and available services are found out using Pellet 
reasoner. In this method, the semantic reasoning and 
matching is performed in online with the query. This 
experiment is tested using Test_Collection_1. The 
computation time of functional discovery of sequential 
method with respect to number services is given in Table 3 
as well as in Figure 10. From Table 3 and Figure 10, the 
computation time of functional discovery is found to 
increase linearly with increase in number of services. 
Further, the average computation time involved in single 
semantic match is found to be 9.7239 seconds. In real 
business applications, as several services have to be 
discovered and composed in complex chain, invoking 
semantic reasoner in online with the query becomes 
impractical. Hence, we suggest avoiding semantic reasoning 
during querying. 

Another experiment is conducted using sequential 
method with pre-computed semantic relations. In this 
method, two pre-computed service categories, namely, 
output service category and input service category are 
created prior to querying. In the output service  
category, against each output parameter, its various 
semantically related matches, namely equal, direct_plugin, 
indirect_plugin, direct_subsumes, indirect_subsumes, 
sibling, partial-parent and grandparent are stored. 
Similarly, in the input service category, against each input 
parameter, its various semantically related matches are 

stored. The pre-computed service categories may be 
archived in different formats such text files, Excel files, 
database files, etc. In our experiment, the pre-computed 
values are stored in Excel file. Time taken for discovering 
matched services by sequential method with pre-computed 
semantic relations is split into two components, namely, 
time required to load the pre-computed semantic relations 
and time taken to retrieve the matched services. The 
computation time of sequential method with pre-computed 
semantic relations with respect to number of services (using 
Test_Collection_2) is given in Table 4. From Table 4, both 
time taken for loading the semantic relations and time taken 
for retrieving matched services are found to increase 
linearly with number of services. The influence of loading 
time can be prevented by loading the semantic relations 
prior to querying itself. The more influential part is retrieval 
time which is found to increase with number of services. 

Table 3 Time taken for functional discovery by sequential 
method (using Test_Collection_1) 

# of services Time taken for discovery (in seconds) 

100 482 
200 1,195 
300 2,396 
400 3,755 
500 5,275 
600 7,378 
700 9,185 
800 10,923 

 

Figure 10 Time taken for functional discovery by sequential method 
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Table 4 Time taken for functional discovery by sequential 
method with pre-computed semantic relations  
(using Test_Collection_2) 

# of 
services 

Loading time of pre-computed 
service categories 
(in milli seconds) 

Retrieval time  
(in milli seconds) 

1,000 2,926 75.872 
2,000 4,327 90.522 
3,000 5,415 102.82 
4,000 7,855 121.954 
5,000 9,257 134.968 
6,000 11,357 149.102 
7,000 12,660 165.314 
8,000 13,957 187.418 
9,000 15,073 204.342 
10,000 17,125 221.665 

Another experiment is conducted to find the computation 
time of discovering services using the proposed method. In 
this method, immediately after loading the pre-computed 
service categories, in-memory hash-based input index and 
output index are created with input and output parameters as 
keys. In either index, each key of the index is mapped to its 
semantically related service categories. During querying 
matched services are retrieved from indices using service 
retrieval described in Subsection 3.1.2. The time taken for 
functional discovery by the proposed method is split into 
three components, namely, time required to load the  
pre-computed service categories, time required to create 
hash-based indices and time required to retrieve matched 
services using indices. The time taken for functional 
discovery by the proposed method with respect to number 
of services is given in Table 5. From Table 5, the time taken 
to load the pre-computed service categories and time taken 
to create hash indices are found to increase with respect to 
number of services. As loading of pre-computed service 
categories and creation of indices can be performed prior to 
querying their effect on computation time can be eliminated. 
Out of the three components, the most influential part is the 

time taken for retrieval of services using indices. From 
Table 5, the time taken to retrieve matched services using 
indices is found to remain almost constant with respect to 
number of services. This is an interesting feature achieved 
with hash-based indices. Also, for comparison, the time 
taken for retrieval of matched services by the sequential 
method with pre-computed semantic relations and the 
proposed method with respect to number of services is 
presented in Figure 11. From Figure 11, the retrieval time 
taken by the proposed method is found to be very low when 
compared to that of sequential method with pre-computed 
semantic relations. Further, the retrieval time of the 
proposed method remains constant with respect to  
number of services. Here the hashing of indices helps in 
achieving time complexity of O(1) irrespective of number of 
services. 

4.3.2 Computation time of non-functional selection 

The time characteristics of non-functional selection are 
evaluated by studying the time characteristics of 
decomposition of constraints and service selection. The 
proposed methods for decomposing constraints and 
selecting services are implemented in Java and a series of 
experiments have been conducted. The time taken for 
decomposing constraints is independent of number of 
services present in a service class as the method is based on 
the extreme values of QoS attributes of service classes. 
Hence, the time taken for decomposing constraints is 
analysed by varying the number of service classes in a 
workflow. Time taken for decomposing a given global 
constraint to a sequential workflow by varying the number 
of service classes from 10 to 100 in steps of 10 is given in 
Table 6 and Figure 12. From Table 6 and Figure 12, the 
time taken for decomposing constraints with respect to 
number of service classes is found to increase very slowly. 
For example, when the number of service classes is 
increased from 10 to 100, the time taken for decomposing a 
constraint is found to increase from 376 micro seconds to 
726 micro seconds. 

Table 5 Time taken for functional discovery by proposed method (hash index-based) using Test_Collection_2 

# of  
services 

Loading time of pre-computed 
service categories (in milli seconds) 

Time required to create hash 
indices (in milli seconds) 

Retrieval time using 
indexing (in milli seconds) 

1,000 2,926 1,338 1.025 
2,000 4,327 2,066 1.009 
3,000 5,415 3,072 1.121 
4,000 7,855 3,301 0.988 
5,000 9,257 3,736 1.045 
6,000 11,357 4,174 1.110 
7,000 12,660 4,944 0.974 
8,000 13,957 5,415 1.09 
9,000 15,073 5,997 0.935 
10,000 17,125 6,529 0.992 
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Figure 11 Time taken for retrieving services (during functional discovery) by proposed method and sequential method with pre-computed 
semantic relations 

 

Figure 12 Time taken for decomposing constraints to a sequential workflow with respect to number of service classes 

 

 
Table 6 Time taken for decomposing constraints to sequential 

workflow with respect to number of service classes 

Number of service 
classes 

Time taken for decomposition 
(in micro seconds) 

10 376 
20 445 
30 480 
40 517 
50 533 
60 595 
70 622 
80 695 
90 706 
100 726 

The time taken for selecting the best service for a service 
class depends on the number of services present in that 
service class (as selection is performed by checking the QoS 
attributes of individual services against local constraints). 
As service selection is performed simultaneously for all 
service classes in multithreaded fashion, the time taken for 
service selection will be equal to the time taken for selecting 
the best service for a single service class. 

Just prior to selection, the QoS data of services  
which are archived in Excel are brought to the concerned 
service-based application. To enhance the performance of 
search process, the QoS values of services are hash-indexed 
and this index is called as QoS hash index as in Figure 9. In 
QoS hash index, the service_ID is used as the key and each 
key is mapped to its QoS values. During non-functional 
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selection, the QoS values of each service present in a 
service class are checked for their compliance with the local 
constraints. If a service is found to satisfy the local 
constraints of its service class, then its utility is computed. 
By checking the utilities of all services, the service having 
the maximum utility is found out as the best service for a 
service class. 

To provide an insight on how hash indexing helps in 
achieving constant time while accessing QoS values of a 
service, two experiments are conducted. In one experiment, 
time taken for loading the QoS values into memory and time 
taken for retrieving a service using sequential search (i.e., 
without hash index) are analysed. The time taken for 
retrieving first, middle and last services by varying the 
number of services from 1,000 to 10,000 in steps of 1,000 is 
given in Table 7 along with time taken for loading QoS 
values. In another experiment, the time taken for loading 

QoS values into memory, time taken for creating QoS hash 
index and time taken for accessing a service from the QoS 
hash index with respect to number of services are analysed. 
The time taken for retrieving first, middle and last services 
by varying the number of services from 1,000 to 10,000 in 
steps of 1,000 using QoS hash index (index-based search) is 
given in Table 8 along with time taken for loading QoS 
values and time taken for creating indices. While comparing 
Tables 7 and 8, QoS hash is found to help in achieving 
almost constant access time with respect to number of 
services. For comparison, the time taken for accessing an 
element (say, last element) with respect to number of 
services, using sequential method and index-based method 
is given in Figure 13. From Figure 13, it is found that access 
time of sequential method increases with respect to number 
of services whereas the access time of index-based method 
remains constant with respect to number of services. 

Table 7 Time required for retrieving a service using sequential search (without QoS hash) 

Retrieval time (in micro seconds) 
# of services Time to load QoS 

(in milli seconds) First service Middle service Last service 

1,000 254 31 103 181 
2,000 273 32 194 298 
3,000 287 33 363 705 
4,000 280 37 489 967 
5,000 285 38 579 1,225 
6,000 298 31 568 1,213 
7,000 304 32 655 1,389 
8,000 307 31 670 1,335 
9,000 329 31 754 1,576 
10,000 331 35 1,035 2,134 

Table 8 Time required for retrieving a service using QoS hash index 

Time taken to retrieve a service from hash (in micro seconds) # of 
services 

Time taken to load QoS values 
(in milli seconds) 

Time taken to create hash
(in micro seconds) First service Middle service Last service 

1,000 254 28,293 5 7 4 
2,000 273 33,679 3 7 3 
3,000 287 57,233 4 6 5 
4,000 280 56,639 4 6 4 
5,000 285 54,282 4 6 5 
6,000 298 50,584 3 8 5 
7,000 304 55,028 4 8 4 
8,000 307 58,722 5 7 4 
9,000 329 63,897 6 7 3 
10,000 331 85,311 4 7 4 
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Figure 13 Time taken for accessing an element using hash index-based method (QoS hash index) and sequential method 

 

Table 9 Time taken for finding the best service by sequential search and index-based search (using QoS hash) 

Time taken to select the best service 
# of 
services 

Time to load QoS 
(in milli seconds) 

Time to create hash 
(in micro seconds) QoS hash index-based search 

(in micro seconds) 
Sequential search 
(in micro seconds) 

1,000 254 28,293 1,489 4,275 
2,000 273 33,679 2,383 7,161 
3,000 287 57,233 3,403 11,201 
4,000 280 56,639 3,907 14,642 
5,000 285 54,282 4,586 17,752 
6,000 298 50,584 5,238 22,468 
7,000 304 55,028 5,831 27,661 
8,000 307 58,722 6,589 31,217 
9,000 329 63,897 7,588 34,625 
10,000 331 85,311 7,991 38,197 

Figure 14 Time taken for finding the best service using index-based search (QoS hash index) and sequential search 
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Also, the time taken for finding the best service from a 
service class with respect to number of services using 
sequential search and index-based search is given in Table 9 
and Figure 14. Sequential search involves two time 
components, namely, time taken to load the QoS values and 
time taken to search whereas index-based search involves 
three components, namely, time taken to load the QoS 
values, time taken to create QoS hash and time taken to 
search using index. Both the methods have loading 
component in common and as loading of QoS is done prior 
to querying, it will not affect the time taken for selecting the 
best service during querying. Similarly in the case of  
index-based search, as index is created prior to querying, it 
will not affect the time taken for selecting the best service. 
The influential component is the time taken for searching 
and finding the best service based on constraints and utility. 
From Table 9 and Figure 14, the time taken to find the best 
service using index-based search is found to be very low 
when compared to sequential search. From Table 9, when 
the number of services is increased from 1,000 to 10,000, 
the time taken for selecting the best service using  
index-based search is found to increase very slowly  
(from 1.489 milli seconds to 7.991 milli seconds) when 
compared to that of sequential search (from 4.275 milli 
seconds to 38.197 milli seconds). As the variation in time 
taken for selecting the best service using the index-based 
search is very slow with respect to number of services, it is 
suggested to use hash-based index while searching for the 
best service. 

4.3.3 Computation time of decomposing constraints 
to combinational workflows having parallel 
units 

To study the time variation in decomposing constraints to a 
combinational workflow having parallel units, the number 
of parallel units in the workflow is increased from 1 to 10. 
Each parallel unit contains two paths of tasks and each path 
contains five tasks/service classes. The variation in time 
taken for decomposing constraints to a combinational 
workflow having parallel units with respect to number of 
parallel units is given in Table 10 and Figure 15.  
From Table 10 and Figure 15, the computation time of 
decomposing constraints with respect to number of parallel 
units is found to increase very slowly. For example, when 
the number of parallel units is increased from 1 to 10, the 
time taken for decomposing constraints is found to increase 
from 4.4835 milli seconds to 10.3435 milli seconds. 

Table 10 Time taken for decomposing constraints to a 
combinational workflow having parallel units 

# of parallel units Time taken (in milli seconds) 

1 4.4835 
2 5.1725 
3 6.0535 
4 6.712 
5 7.1605 
6 7.8105 
7 8.3105 
8 8.9225 
9 9.7155 
10 10.3435 

Figure 15 Time taken for decomposing constraints to a combinational workflow having parallel units 
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4.3.4 Testing the accuracy of results of proposed 
approach 

The accuracy of results obtained with functional discovery 
of the proposed approach is compared with standard 
sequential method using two evaluation measures, namely, 
precision and recall. A set of test queries has been chosen 
and for each test query its matched services are discovered 
using sequential method and proposed method of functional 
discovery. For a query, let s

rrN  and s
rN  denote the number 

of relevant services retrieved and the number of services 
retrieved using sequential method. Similarly, for a query, let 

p
rrN  and p

rN  denote the number of relevant services 
retrieved and the number of services retrieved using 
proposed method respectively. Further, for a query, let Ntr 
denotes the actual number of relevant services present in the 
test collection. For each query, let Ps and Pp denote the 
precision of sequential and proposed methods respectively. 
For each query, let Rs and Rp denote the recall of sequential 
and proposed methods respectively. The values of Ps, Rs, Pp 
and Rp are computed as follows. 
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Eight test queries have been chosen. Matched services for 
these queries have been found out using both the methods. 
The values of ,  ,  ,  s s p p

rr r rr rN N N N  and Ntr obtained for 
different test queries are given in Table 11 along with 
details of queries. Out of eight queries, the precision and 
recall for queries Q2, Q7 and Q8 are found to be zero for 
both methods and for remaining queries, the precision and 
recall are found to be 100% for both methods. Hence the 
precision and recall of discovery are not altered by indexing. 
Further, the recall and precision of both the methods are 
same because the way of computing DoM among service 
concepts is same for both methods. 

The accuracy of non-functional selection of the 
proposed method is evaluated using a measure called 
optimality_factor. We define optimality_factor as the ratio 
of utility obtained using the proposed method to the utility 
obtained using global selection. In our work, to find the 
utility of global selection, we adopt the method presented in 
Mohammad and Thomas (2009) where utility of a 
composite service is computed as 

max

max min1

( ) ( )
( ) ( )

r
k

CS k
k

Q k q CS
U w

Q k Q k=

′ −
= ×

′ ′−∑  (37) 

In (37), UCS denotes the utility of a composite service (CS) 
obtained using global approach, max ( )Q k′  denotes the 
maximum value of kth attribute of the given workflow (this 
is computed as the sum of maximum values of kth attribute 
of all service classes present in the workflow) and 

min ( )Q k′  denotes the minimum value of kth attribute of the 
given workflow (this is computed as the sum of minimum 
values of kth attribute of all service classes present in the 
workflow), qk(CS) denotes value of kth attribute of CS and 
wk represents the weight of kth attribute. 

Table 11 Values of ,  ,  ,  s s p
tr r rr rN N N N  and p

rrN  for different test queries 

Query ID Outputs of query Inputs of query Ontologies of query Ntr s
rN  s

rrN  p
rN  p

rrN  

Q1 Book Author Books.owl 2 2 2 2 2 
Q2 Price camera Extendedcamera.owl, concept.owl 0 0 0 0 0 
Q3 Price Three_wheeled_Car Concept.owl, my_ontology.owl 3 3 3 3 3 
Q4 Drinks Price Concept.owl, 

mid_level_ontology.owl 
1 1 1 1 1 

Q5 Whiskey price Concept.owl, 
mid_level_ontology.owl 

4 4 4 4 4 

Q6 Hotel city travel.owl 1 1 1 1 1 
Q7 Weapon Geopolitical entity portal.owl, SUMO.owl, 

mid_level_ontology.owl 
0 0 0 0 0 

Q8 PatientTransport 
Acknowledgement 

PatientTransportProfile, 
PatientTransport_chosen 

hospital 

Hospitalphysicianontology.owl 0 0 0 0 0 
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Figure 16 Optimality_factor with respect to number of service classes 

 

 
In the proposed method, the utility of any ith service of jth 
service class is computed using (32). Using this formula, 
utility of the best service of jth service class can be found 
out. In a similar manner, the utilities of the best service of 
all service classes of the given workflow are computed and 
total of all utilities is taken as the utility obtained using 
proposed method. Let Up denote the utility obtained using 
proposed method. Now, we define optimality_factor as  
the ratio of Up to UCS. The value of optimality_factor is 
computed by varying the number of service classes (keeping 
number of services per service class as 50) and the results 
are given in Table 12 and in Figure 16. From Table 12, the 
average optimality_factor is found to be 99.64%. 

Table 12 optimality_factor with respect to number of service 
classes 

# of service 
classes UCS Up 

optimality_factor 
(%) 

2 0.969802 0.969802 100 
3 0.964901 0.954574 98.929735 
4 0.960232 0.957941 99.761412 
5 0.970998 0.970998 100 
6 0.979542 0.967806 98.801889 
7 0.981256 0.981256 100 
8 0.966363 0.966363 100 

4.3.5 Comparison of proposed approach with 
existing approaches 

To compare the performance of functional discovery of the 
proposed approach, the method presented in Skoutas et al. 
(2008) has been chosen. The time taken for functional 
discovery by the proposed method with respect to number 

of services is given in Table 5. From Table 5, the retrieval 
time of the proposed method to find all matched services of 
a query is found to be constant and its average value is 
1.0289 milli seconds. The retrieval time of proposed method 
is compared to Skoutas et al. (2008). Though Skoutas et al. 
(2008) saves the processing time significantly while finding 
top-k matches where k ∈ {1, 50, 500}, when all matches of 
a query is required to be discovered, then there is a 
significant increase in processing time ranging from around 
40 milli seconds to 150 milli seconds (interpreted from the 
centralised approach of Skoutas et al.’s method). Whereas in 
our proposed method, in a single retrieval itself, all 
categories of matched services of a query are obtained with 
the help of unique indexing. With a typical test collection, 
the average retrieval time is found to be 1.0289 milli 
seconds to retrieve all matches of a query. 

To compare the performance of non-functional selection 
of the proposed approach, the method proposed in 
Mohammad and Thomas (2009) has been chosen. The time 
involved in the non-functional selection of the proposed 
approach with respect to number of service classes is 
compared to that of Mohammad and Thomas (2009). In our 
approach the time involved in non-functional selection is 
computed by finding the sum of time involved in 
decomposition of constraints and time involved in service 
selection. By keeping number of services as 500 and 
number of constraints as 3, the time taken by non-functional 
selection is computed by varying the number of service 
classes from 10 to 100. The variation in computation time of 
non-functional selection of the proposed approach is 
compared to that of Mohammad and Thomas (2009) as 
given in Table 13. From Table 13, the variation in 
computation time of proposed approach is found to be very 
small and negligible when compared to that of Mohammad 
and Thomas (2009). 
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Table 13 Time taken for non-functional selection – proposed approach versus Mohammad and Thomas (2009) approach with respect to 
number of service classes 

Computation time (in milli seconds) 
# of service classes # of constraints # of services 

Mohammad and Thomas (2009) approach Proposed approach 

10–100 3 500 500–20,000 1.146–1.557 

 
5 Conclusions 

This paper presents a better approach for identifying best 
services for composition based on functional discovery and 
non-functional selection. The paper presents a unique 
indexing of pre-computed semantic relations for input and 
output parameters of all services in a repository. More 
specifically the proposed method can handle disparate 
similarity demands of client applications in terms of RDoM 
and deliver matched services accordingly. RDoM can take 
nine different categorical values. The provision of nine 
different matches gives better flexibility to service clients in 
feeding a desirable value for RDoM. This is another unique 
feature of the proposed approach. Further, the usage of two 
indices fully eliminates the invoking of semantic reasoning 
during querying. A new method for service retrieval using 
indices is also presented. The method is efficient in finding 
all possible matches according to the given RDoM in 
constant time. 

The non-functional selection is optimised using a local 
selection in multithreaded fashion with a new method  
of decomposing QoS constraints. The usage of local  
selection, multithreading and QoS hash index enhances the 
performance of non-functional selection significantly. The 
method of decomposing constraints has a unique feature that 
the method is independent of number of services present in 
a service class. This is very desirable as any real time 
business transaction involves several services from different 
domains to be composed quickly. 

The proposed method has been implemented and from a 
series of experiments the method is found to yield excellent 
time characteristics. Also, the accuracy of the method is 
evaluated by comparing the results with that of standard 
approaches using the evaluation measures, precision, recall 
and optimality_factor. The accuracy is found to be not 
affected by the optimising techniques. The minimum time 
consumption of the method makes it more applicable to 
dynamic composition needs. 

References 
Gao, T., Wang, H., Zheng, N. and Li, F. (2009) ‘An improved way 

to facilitate composition-oriented semantic service discovery’, 
in International Conference On Computer Engineering and 
Technology – ICCET ‘09, Singapore, pp.156–160. 

Guo, R., Le, J. and Xia, X. (2005) ‘Capability matching of web 
service based on OWL-S’, in Proceedings of the 16th 
International Workshop on Database and Expert Systems 
Applications, DEXA, IEEE Computer Society, Copenhagen, 
Denmark, pp.653–657. 

Hong, L. and Hu, J. (2009) ‘A multi-dimension QoS based local 
service selection model for service composition’, in Journal 
of Networks, Vol. 4, No. 5, pp.351–358, Academy Publisher. 

Jin, J., Zhang, Y., Cao, Y. and Zhou, R. (2010) ‘An enhanced QoS 
decomposition approach for efficient service composition’,  
in 5th International Conference on Computer Science & 
Education (ICCSE), Beijing, China, pp.1680–1684. 

Kuang, L., Li, Y., Deng, S. 0and Wu, Z. (2007) ‘Inverted  
indexing for composition-oriented service discovery’, in IEEE 
International Conference on Web Services, Salt Lake City, 
Utah, USA, pp.257–264. 

Li, J., Zhao, Y., Liu, M., Sun, H. and Ma, D. (2010) ‘An adaptive 
heuristic approach for distributed QoS-based service 
composition’, in IEEE Symposium on Computers and 
Communications, Beijing, China, pp.687–694. 

Liu, P., Zhang, J. and Yu, X. (2009) ‘Clustering-based semantic 
web service matchmaking with automated knowledge 
acquisition’, in Proceedings of the International Conference 
on Web Information Systems and Mining (WISM ‘09), 
Shanghai, China, pp.261–270. 

Mohammad, A. and Thomas, R. (2009) ‘Combining global 
optimization with local selection for efficient QoS-aware 
service composition’, in Proceedings of the 18th International 
Conference on World Wide Web, ACM, New York,  
pp.881–890. 

Mohammad, A., Thomas, R., Peter, D. and Wolfgang, N. (2008) 
‘A scalable approach for QoS-based web service selection’,  
in Service-Oriented Computing ICSOC 2008 Workshops, 
Springer-Verlag, Berlin, pp.190–199. 

Mokhtar, S.B., Kaul, A., Georgantas, N. and Issarny, V. (2006) 
‘Towards efficient matching of semantic web  
service capabilities’, in International Workshop on Web 
Services Modeling and Testing (WS-MaTe), Palermo, Italy, 
pp.137–152. 

Mokhtar, S.B., Preuveneers, D., Georgantas, N., Issarny, V. and 
Berbers, Y. (2008) ‘EASY: efficient semantic service 
discovery in pervasive computing environments with QoS  
and context support’, in the Journal of Systems and Software, 
Elsevier Science Inc., New York, NY, USA, Vol. 81, No. 5,  
pp.785–808. 

Paolucci, M., Kawamura, T., Payne, T.R. and Sycara, K.  
(2002) ‘Semantic matching of web service capabilities’,  
in International Semantic Web Conference, Springer Verlag, 
LNCS, Sardinia, Italy, Vol. 2342, pp.333–347. 

Pathak, J., Koul, N., Caragea, D. and Honavar, V.G. (2005)  
‘A framework for semantic web services discovery’,  
in the Proceedings of 7th ACM International Workshop on 
Web Information and Data Management (WIDM-2005), 
Bremen, Germany, ACM, pp.45–50. 

Paul, Y.K. and Ching-Lai, H. (1995) ‘Multiple attribute decision 
making: an introduction’, in Sage University Paper Series on 
Quantitative Applications in the Social Sciences,  
ISBN 0-8039-5486-7. 

 
 



 Towards quicker discovery and selection of web services considering required degree of match 69 

Qiu, T. and Li, P. (2008) ‘Web service discovery based on 
semantic matchmaking with UDDI’, in the Proceedings of 9th 
International Conference for Young Computer Scientists 
(ICYCS 2008), IEEE Computer Society, Hunan, China, 
pp.1229–1234. 

Rozina, C.V., Bianca, P.C., Ioan, S., Mihaela, D., Vlad, A. and 
Tudor, D. (2010) ‘an ant-inspired approach for semantic web 
service clustering’, in Roedunet 9th International Conference 
(RoEduNet) Sibiu, Romania, pp.145–150. 

Skoutas, D., Sacharidis, D., Kantere, V. and Sellis, T. (2008) 
‘Efficient semantic web service discovery in centralized and 
P2P environments’, in the Proceedings of 7th International 
Semantic Web Conference (ISWC), Karlsruhe, Germany, 
pp.583–598. 

Sun, S.X., Zhao, J. and Wang, H. (2010) ‘A negotiation based 
approach for service composition’, in Proceedings of the 5th 
International Conference on Global Perspectives on Design 
Science Research GPIC (DESRIST ‘10), St. Gallen, 
Switzerland, pp.381–393. 

Zeng, L., Benatallah, B., Marlon, D., Kalagnanam, J. and  
Sheng, Q.Z. (2003) ‘Quality driven web services 
composition’, in Proceedings of the 12th International 
Conference on World Wide Web, ACM Press, Budapest, 
Hungary, pp.411–421. 

Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J. 
and Chang, H. (2004) ‘QoS-aware middleware for web 
service composition’, in IEEE Transactions on Software 
Engineering, Vol. 30, No. 5, pp.311–327. 

Zhag, J., Yu, X., Liu, P. and Wang, Z. (2009) ‘Research on 
improving performance of semantic search in UDDI’, in the 
Proceedings of WRI GCIS, Global Congress on Intelligent 
Systems, IEEE Computer Society, Xiamen, China,  
pp.572–576. 

Zhou, B., Huang, T., Liu, J. and Shen, M. (2009) ‘Using inverted 
indexing to semantic WEB service discovery search model’, 
in Proceedings of 5th International Conference on Wireless 
Communications, Networking and Mobile Computing, 
(WiCom ‘09), IEEE Press, Beijing, China, pp.4872–4875. 

Zhu, Z., Yuan, H., Song, J., Bi, J. and Liu, G. (2010) ‘WSSCAN:  
a effective approach for web services clustering’,  
in Proceedings of International Conference on Computer 
Application and System Modeling (ICCASM), Taiyuan, China, 
Vol. 5, pp.618–622. 


